Dave's Math Tables: Special Functions (Math | Calculus | Integrals | Special Functions)

Some of these functions I have seen defined under both intervals (0 to x) and (x to inf). In that case, both variant definitions are listed.
gamma = Euler's constant = 0.5772156649...

(x) = Gamma(x) = t^(x-1) e^(-t)dt (Gamma function)
B(x,y) = t^(x-1) (1-t)^(y-1)dt
(Beta function)
Ei(x) = e^(-t)/t dt (exponential integral) or it's variant, NONEQUIVALENT form:

Ei(x) = + ln(x) + (e^t - 1)/t dt = gamma + ln(x) + (n=1..inf)x^n/(n*n!)
li(x) = 1/ln(t) dt (logarithmic integral)
Si(x) = sin(t)/t dt (sine integral) or it's variant, NONEQUIVALENT form:
Si(x) = sin(t)/t dt = PI/2 - sin(t)/t dt

Ci(x) = cos(t)/t dt (cosine integral) or it's variant, NONEQUIVALENT form:
Ci(x) = - cos(t)/t dt = gamma + ln(x) + (cos(t) - 1) / t dt (cosine integral)

Chi(x) = gamma + ln(x) + (cosh(t)-1)/t dt (hyperbolic cosine integral)
Shi(x) = sinh(t)/t dt (hyperbolic sine integral)
Erf(x) = 2/PI^(1/2)e^(-t^2) dt = 2/PI (n=0..inf) (-1)^n x^(2n+1) / ( n! (2n+1) ) (error function)
FresnelC(x) = cos(PI/2 t^2) dt
FresnelS(x) = sin(PI/2 t^2) dt
dilog(x) = ln(t)/(1-t) dt
Psi(x) = ln(Gamma(x))
Psi(n,x) = nth derivative of Psi(x)
W(x) = inverse of x*e^x
L sub n (x) = (e^x/n!)( x^n e^(-x) ) (n) (laguerre polynomial degree n. (n) meaning nth derivative)
Zeta(s) = (n=1..inf) 1/n^s

Dirichlet's beta function B(x) = (n=0..inf) (-1)^n / (2n+1)^x

Theorems with hyperlinks have proofs, related theorems, discussions, and/or other info.