ACM Guide Reviewer Index 2, Probabilistic Turing machines and recursively enumerable dedekind cuts M Chrobak, B S. Chlebus Information Processing Letters November 1984 Volume 19 Issue http://portal.acm.org/reviewers.cfm?part=author&row=W&idx=1&idx2=20&query=P26782
What Are The 'real Numbers,' Really? In particular, the decimal expansions, the dedekind cuts, and the equivalence classesof Cauchy sequences, though they appear to be entirely different, all http://www.cartage.org.lb/en/themes/Sciences/Mathematics/calculus/realnumbers/co
What Are The 'real Numbers,' Really? Wouldn't it be easier to simply define the real numbers to be the dedekind cuts,or define the real numbers to be the decimal expansions, or something like that http://www.cartage.org.lb/en/themes/Sciences/Mathematics/calculus/realnumbers/fi
Program Files\Netscape\Communicator\Program\dedexxx One remarkable piece of work was his redefinition of irrational numbers in termsof dedekind cuts which, as we mentioned above, first came to him as early as http://www.andrews.edu/~calkins/math/biograph/biodedek.htm
Weierstrass, Dedekind And Cantor (d) dedekind cuts. Dedekind went on to call such cuts irrational numbers,and the set of all cuts he called the real numbers.. (e) Completeness. http://www.maths.uwa.edu.au/~schultz/3M3/L28Weierstr,Dede,Cantor.html
Surreal Numbers dedekind cuts are fairly concrete, or at least understandable without too much difficulty.So where can we find these dreamlike, fantastical, surreal numbers? http://www.usna.edu/MathDept/wdj/surreal1.htm
Real Numbers The Dedekind Cut. dedekind cuts define all real numbers. ie both rational andirrational numbers. Definition in terms of positive and negative rationals. http://room.anu.edu.au/DoM/firstyear/poetry/RealNumbers.html
Archimedes Plutonium dedekind cuts on the rationals produce all the reals, including the rationals and integers. Unioning them is not necessary. Examples. http://www.newphys.se/elektromagnum/physics/LudwigPlutonium/File009.html
Archimedes Plutonium Autobiography Axiom of Choice Reals can be arranged (ordered) so that every subset underthis same ordering has a first element is equivalent to dedekind cuts I am http://www.archimedesplutonium.com/File1995_07.html
Tatra Mountains In this paper, we present a Boolean, pointfree characterization of fuzzy observables,using Boolean-valued dedekind cuts and the theory of Boolean powers. http://tatra.mat.savba.sk/paper.php?id_paper=59
Introduction: A Brief History Of Axiomatic Set Theory convergent sequences of rationals. Shortly after Dedekind published hisfamous characterization of the real numbers as dedekind cuts . http://www.jboden.demon.co.uk/SetTheory/history.html
Abstract 18/12/98 K. Grue Retour à la page du séminaire 18/12/98 Klaus Grue dedekind cuts as ameans for constructing kappaScott domains. abstract In Berline Grue http://www.logique.jussieu.fr/semlam/98_99/981218grue.html
Mathematics List Part 3 Complete text. ( Said to be the original paper where Dedekind defined irrationalnumbers in terms of dedekind cuts. ) MATH13261 $150.00. Dedekind, Richard. http://www.significantbooks.com/mthl3.htm
Re: Symbolic Math_Quantum Mechanics_Continued Dedekind published his definition of the real numbers by dedekind cuts also in1872 and in this paper Dedekind refers to Cantor's 1872 paper which Cantor had http://www.mdlug.org/archives/mdlug-pro/msg00036.html
Study Group illusion, fourth dimensional space, the laws of probability and other advanced conceptsin mathematics (eg space/time continuums, dedekind cuts, Poincaré cuts http://www.artscienceresearchlab.org/events/lectures.htm
Browse Probabilistic Turing machines and recursively enumerable dedekind cuts, Article,01/01/87. Information transfer under different sets of protocols, Article, 06/01/86. http://www.reviews.com/Browse/Browse_reviewer2.cfm?reviewer_id=107831
Categories: Re: Real Interval Halving irrationals along with infinity (thinking of the real line projectively) are thenobtained as the empty rays, all of which make distinct dedekind cuts in the http://north.ecc.edu/alsani/ct99-00(8-12)/msg00054.html
Forelesninger I MA 370 (Mat 301) Våren 1998 Forelesninger i MA 370 (Mat 301) våren 1998. Dato 24.02.98, Tema Dedekindog Cantor. § 16.2.1, F, dedekind cuts. Ø, Katz side 686 23, 24, 26. http://home.hia.no/~aasvaldl/kurs/ma370_3.html
Dedekind's Real Numbers set of rational numbers''; Maddy1992, p. 81 ``by identifying real numbers withcertain sets (called `dedekindcuts'), dedekind '' misinterpretation. http://www.phil.cmu.edu/dschlimm/texts/reals.html
Dedekind, Richard study of CONTINUITY and definition of the real numbers in terms of dedekind "cuts", the Category Science Math History People 12, 1916, was a German mathematician known for his study of CONTINUITY and definitionof the real numbers in terms of dedekind cuts ; his analysis of the http://euler.ciens.ucv.ve/English/mathematics/dedekind.html