Geometry.net Online Store

Geometry.Net - the online learning center
Home  - Mathematical_Logic - Model-theoretic Forcing
  
Images 
Newsgroups
Page 1     1-53 of 53    1 

1. Vita For Kim Bruce
Modeltheoretic forcing in logic with a generalized quantifier, Annals of Mathematical Logic 13 (1978), pp. 225-265 (reviewed in Math.
http://www.cs.williams.edu/~kim/Vita.html
Vita for Kim B. Bruce
Department of Computer Science
Thompson Computer Science Lab
Williams College
47 Lab Campus Drive
Williamstown, MA 01267 kim@cs.williams.edu
Office Phone: (413) 597-2273
Quick index
Research Interests:
Semantics and design of programming languages: types, polymorphism, object-oriented and functional programming languages; computer science education; theory of computation; mathematical logic.
Professional and Teaching Experience:
Regular Positions:
  • Williams College, Williamstown, MA., 9/77 - present, Frederick Latimer Wells Professor of Computer Science, Chairman (1987-1990, 1992-1993, 1996-1998), Department of Computer Science.
    Teaching and research in computer science and (until 1982) mathematics. Initiated and led the design and implementation of major and new department in Computer Science. Chaired department for first three years of its existence. Princeton University, 9/75 - 6/77, Instructor in mathematics.

2. Logic Seminar - Archive
Modeltheoretic forcing III. November 18, 2002 at 13.3o; J.Hanika forcing in proof theory I. Elimination of Skolem functions (after J.Avigad)
http://www.math.cas.cz/~krajicek/logika_old.html
Logic seminar: archive 1995 - 2006
  • S. Riis (Aarhus)
    Symmetrical equations -> symmetrical solutions?
  • A. Woods (Australia)
    Random finite functions standard and nonstandard

    January 4, 1996
  • J. Hruska (Charles University)
    Open-point a Open-open hry na regularnich topologickych prostorech a jejich ekvivalenty na Booleovskych algebrach
    March 25, 1996
  • Dan Willard (SUNY, Albany)
    Introspective Semantics for Turing Machine Languages

    March 4, 1996
  • Yuri Gurevich (Ann Arbor) Finite model theory June 17, 1996
  • Stevo Todorcevic (Toronto) Borel chromatic numbers July 10, 1996
  • L. van den Dries (Urbana) O-minimal extensions of R and quantifier elimination with Exp July 15, 1996
  • A. Sochor (MU) Nestandartnost nadmodelu September 16, 1996
  • A. Sochor (MU) Nestandartnost nadmodelu II. September 30, 1996
  • A. Sochor (MU) Nestandartnost nadmodelu III. October 7, 1996
  • P. Pudlak (MU) O Dawkingskove knize "Selfish gene" October 21, 1996
  • J. Krajicek (MU) Forcing v jazyce teorie miry November 11, 1996
  • J. Krajicek (MU) Spodni odhad pro polynomialni kalkulus podle A.A.Razborova December 2, 1996
  • 3. A Natural Semantics For Modal Logic Over Databases And Model
    A Natural Semantics for Modal Logic over Databases and Modeltheoretic forcing. Resource URI http//www4.wiwiss.fu-berlin.de/dblp/resource/record/conf/nmr/
    http://www4.wiwiss.fu-berlin.de/dblp/resource/record/conf/nmr/Marek84

    4. Past Talks In The Mathematical Logic Seminar Organizer Rami
    There are several ways to say what a generic structure is; one of them uses the Modeltheoretic forcing, a notion that somewhat resembles its set-theoretic
    http://www.math.cmu.edu/~rami/seminar.past.html
    Past talks in the Mathematical Logic Seminar
    Organizer: Rami Grossberg ( Rami@cmu.edu
    M 4:30 - 6:00 PM
    Wean 8427
    • April 26, 2002 (4:30PM at WeH 7500)
      SPEAKER: Andres Villaveces, Mathematics, National University of Colombia at Bogota
      TITLE: What kind of interaction can you expect between Model Theory and the rest of Mathematics?
      ABSTRACT: Model theory in the last years has started to provide results in branchs of mathematics such as algebra, Banach Space theory and Compact Manifolds. In this talk, I will show why the interaction between Model Theory and other parts of mathematics is very natural, and mention several examples of these interactions. I plan to concentrate on the role of homogeneous and universal mathematical structures.
    • April 22, 2002
      SPEAKER: Mirna Dzamonja, Mathematics, University of East Anglia
      TITLE: Axioms for universality ABSTRACT:
    • April 15, 2002 SPEAKER: No seminar.
    • April 8, 2002 SPEAKER: Kerry Ojakian, Mathematics, CMU TITLE: A few tidbits about Bounded Arithmetic ABSTRACT: Bounded Arithmetic is a weak theory contained in Peano Arithmetic. I will present some background material, and then talk about some stuff you can and cannot prove in this theory and its subtheories. I'll probably talk about some things I've worked on, like a Ramsey principle, and the Tournament Principle. The first can be proved in Bounded Arithmetic, the second, well ... This talk should be accessible to "anyone," at least at an intuitive level (that's my goal, no promises).

    5. Tree Structure Of LoLaLi Concept Hierarchy Updated On 2004624
    229 Modeltheoretic forcing . . . . 224 higher-order model theory . . . . Par 493 correspondence theory . . . . 223 finite structure .
    http://remote.science.uva.nl/~caterina/LoLaLi/soft/ch-data/tree.txt
    Tree structure of LoLaLi Concept Hierarchy Updated on 2004:6:24, 13:16 In each line the following information is shown (in order from left to right, [OPT] indicates information that can be missing): Type of relation with the parent concept (see below for the legend) [OPT] Id of the node Name of the node Number of children, in parenthesis [OPT] + if the concept is repeated somehwere [OPT] (see file path.txt for the list of repeated nodes) LEGEND: SbC Subclass Par Part-of Not Notion Res Mathematical results His historical view Ins Instance Uns Unspecified top (4) g . 87 computer science (4) g . . 191 logic (1) (31) + g . . . Par 53 automated reasoning (25) + . . . . 35 belief revision . . . . . 76 update . . . . 67 nonmonotonic reasoning . . . . 63 mathematical induction . . . . 71 rewrite system (3) . . . . . 350 termination . . . . . 348 confluence . . . . . 349 critical pair . . . . 70 resolution (7) + . . . . . 339 purity principle . . . . . 342 simplification . . . . . 337 demodulation . . . . . 338 ordering . . . . . 340 removal of tautologies . . . . . 341 resolution refinement (4) . . . . . . 345 lock resolution . . . . . . 344 hyper resolution . . . . . . 347 theory resolution . . . . . . 346 set of support . . . . . 343 subsumption . . . . 68 paramodulation . . . . Not 72 skolemisation . . . . 65 model checking . . . . 55 clause 55 (2) . . . . . 80 horn clause g . . . . . 79 Gentzen clause . . . . 74 uncertainty . . . . 75 unification + . . . . 57 connection graph procedure . . . . 64 metatheory . . . . 61 literal . . . . 58 connection matrix . . . . 81 clause 81 . . . . . SbC 82 relative clause . . . . 69 reason extraction . . . . 59 deduction (7) + . . . . . Not 109 inconsistency . . . . . 106 consequence g . . . . . SbC 494 labelled deductive system . . . . . 111 rule-based deduction . . . . . Not 108 entailment + . . . . . 110 natural deduction (2) + g . . . . . . Not 482 hypothetical reasoning + . . . . . . Not 483 normalization . . . . . Not 107 consistency + . . . . Res 60 Herbrand's theorem . . . . 56 completion . . . . . 86 Knuth Bendix completion . . . . 73 theorem prover (3) . . . . . 427 Bliksem g . . . . . 428 Boyer-Moore theorem prover . . . . . 429 SPASS g . . . . 66 narrowing . . . . 62 logic programming g . . . . 54 answer extraction . . . . 247 nonmonotonic logic + g . . . . . 248 default inference . . . Par 198 proof theory (22) g . . . . SbC 503 sequent calculus . . . . . Not 484 structural rules . . . . 289 interpretation . . . . 282 constructive analysis . . . . 295 recursive ordinal . . . . 287 Goedel numbering . . . . 288 higher-order arithmetic . . . . 281 complexity of proofs . . . . 294 recursive analysis . . . . Res 292 normal form theorem . . . . 297 second-order arithmetic . . . . SbC 110 natural deduction (2) + g . . . . . Not 482 hypothetical reasoning + . . . . . Not 483 normalization . . . . 290 intuitionistic mathematics . . . . 286 functionals in proof theory . . . . 298 structure of proofs g . . . . 283 constructive system . . . . 291 metamathematics . . . . 59 deduction (7) + . . . . . Not 109 inconsistency . . . . . 106 consequence g . . . . . SbC 494 labelled deductive system . . . . . 111 rule-based deduction . . . . . Not 108 entailment + . . . . . 110 natural deduction (2) + g . . . . . . Not 482 hypothetical reasoning + . . . . . . Not 483 normalization . . . . . Not 107 consistency + . . . . 296 relative consistency . . . . Not 284 cut elimination theorem g . . . . 293 ordinal notation . . . . 285 first-order arithmetic . . . . SbC 485 proof nets . . . SbC 475 first order logic (4) g . . . . 254 quantifier (5) + g . . . . . Not 516 bound variable + g . . . . . His 514 Frege on quantification + g . . . . . Not 517 free variable + g . . . . . His 513 Aristotle on quantification + . . . . . Not 301 scope . . . . . . 351 scoping algorithm . . . . Par 476 first order language g . . . . . Not 477 fragment (3) g . . . . . . SbC 479 finite-variable fragment g . . . . . . SbC 480 guarded fragment g . . . . . . SbC 478 modal fragment g . . . . . . . Not 470 standard translation + g . . . . 511 SPASS g . . . . Par 515 quantification (4) + . . . . . Not 516 bound variable + g . . . . . His 514 Frege on quantification + g . . . . . Not 517 free variable + g . . . . . His 513 Aristotle on quantification + . . . 193 computability theory . . . SbC 167 temporal logic (2) + g . . . 435 type theory (2) + . . . . 433 type . . . . . 434 type shifting . . . . Not 23 polymorphism + g . . . 495 substructural logic . . . SbC 200 relevance logic + . . . . 108 entailment + . . . Res 180 Lindstroem's theorem + . . . SbC 481 linear logic . . . 526 variable g . . . . SbC 517 free variable + g . . . Res 179 Goedel's 1st incompleteness theorem (1931) + g . . . SbC 125 feature logic + . . . . 75 unification + . . . 197 model theory (29) . . . . 237 set-theoretic model theory . . . . 11 universal algebra + . . . . 225 infinitary logic . . . . 217 admissible set . . . . 234 recursion-theoretic model theory . . . . 239 ultraproduct . . . . 227 logic with extra quantifiers . . . . SbC 457 modal model theory (7) + . . . . . SbC 215 Kripke semantics + g . . . . . . Not 489 accessability relation + . . . . . Not 461 generated submodel g . . . . . 462 model (4) + . . . . . . SbC 464 finite model g . . . . . . SbC 466 image finite model . . . . . . . Res 467 Hennessy-Milner theorem g . . . . . . Par 463 valuation g . . . . . . SbC 465 tree model g . . . . . Not 459 disjoint union of models g . . . . . 455 homomorphism (2) + g . . . . . . SbC 456 bounded homomorphism g . . . . . . SbC 468 bounded morphism . . . . . Not 469 expressive power g . . . . . . Not 470 standard translation + g . . . . . Not 460 bisimulation g . . . . 219 completeness of theories . . . . 235 saturation . . . . 222 equational class . . . . 238 stability . . . . 233 quantifier elimination . . . . 221 denumerable structure . . . . 228 model-theoretic algebra . . . . 236 second-order model theory . . . . 230 model of arithmetic . . . . 218 categoricity g . . . . 220 definability . . . . 226 interpolation . . . . SbC 454 first order model theory . . . . . 455 homomorphism (2) + g . . . . . . SbC 456 bounded homomorphism g . . . . . . SbC 468 bounded morphism . . . . 231 nonclassical model (2) . . . . . 246 sheaf model . . . . . 245 boolean valued . . . . 201 set theory (24) + g . . . . . 398 set-theoretic definability . . . . . Not 391 iota operator . . . . . 384 determinacy . . . . . 387 fuzzy relation . . . . . Not 385 filter . . . . . 389 generalized continuum hypothesis . . . . . 386 function (3) g . . . . . . 482 hypothetical reasoning + . . . . . . 509 functional application . . . . . . 508 functional composition . . . . . Not 394 ordinal definability . . . . . Not 107 consistency + . . . . . 397 set algebra . . . . . 399 Suslin scheme . . . . . SbC 383 descriptive set theory g . . . . . 388 fuzzy set g . . . . . 378 borel classification g . . . . . SbC 380 combinatorial set theory . . . . . Not 390 independence . . . . . 381 constructibility . . . . . 396 relation g . . . . . 377 axiom of choice g . . . . . 392 large cardinal . . . . . Not 395 ordinal number . . . . . 393 Martin's axiom . . . . . 382 continuum hypothesis g . . . . . Not 379 cardinal number . . . . 232 preservation . . . . 216 abstract model theory + . . . . . 254 quantifier (5) + g . . . . . . Not 516 bound variable + g . . . . . . His 514 Frege on quantification + g . . . . . . Not 517 free variable + g . . . . . . His 513 Aristotle on quantification + . . . . . . Not 301 scope . . . . . . . 351 scoping algorithm . . . . 229 model-theoretic forcing . . . . 224 higher-order model theory . . . . Par 493 correspondence theory . . . . 223 finite structure . . . Res 182 Loewenheim-Skolem-Tarski theorem + . . . Not 83 completeness (2) + g . . . . SbC 84 axiomatic completeness . . . . SbC 85 functional completeness + . . . SbC 156 modal logic (13) + g . . . . Ins 512 S4 . . . . 488 modes . . . . 486 frame (2) . . . . . SbC 487 frame constraints . . . . Par 210 modal operator (2) + g . . . . . SbC 472 diamond g . . . . . SbC 473 box g . . . . SbC 213 doxastic logic g . . . . Not 489 accessability relation + . . . . Par 471 modal language (2) g . . . . . Par 210 modal operator (2) + g . . . . . . SbC 472 diamond g . . . . . . SbC 473 box g . . . . . 490 boolean operators . . . . SbC 211 alethic logic g . . . . SbC 212 deontic logic (3) g . . . . . SbC 521 standard deontic logic g . . . . . SbC 523 two-sorted deontic logic g . . . . . SbC 522 dyadic deontic logic g . . . . Par 215 Kripke semantics + g . . . . . Not 489 accessability relation + . . . . Par 457 modal model theory (7) + . . . . . SbC 215 Kripke semantics + g . . . . . . Not 489 accessability relation + . . . . . Not 461 generated submodel g . . . . . 462 model (4) + . . . . . . SbC 464 finite model g . . . . . . SbC 466 image finite model . . . . . . . Res 467 Hennessy-Milner theorem g . . . . . . Par 463 valuation g . . . . . . SbC 465 tree model g . . . . . Not 459 disjoint union of models g . . . . . 455 homomorphism (2) + g . . . . . . SbC 456 bounded homomorphism g . . . . . . SbC 468 bounded morphism . . . . . Not 469 expressive power g . . . . . . Not 470 standard translation + g . . . . . Not 460 bisimulation g . . . . SbC 214 epistemic logic g . . . . Not 462 model (4) + . . . . . SbC 464 finite model g . . . . . SbC 466 image finite model . . . . . . Res 467 Hennessy-Milner theorem g . . . . . Par 463 valuation g . . . . . SbC 465 tree model g . . . 194 computational logic (2) . . . Not 183 operator (4) + g . . . . 254 quantifier (5) + g . . . . . Not 516 bound variable + g . . . . . His 514 Frege on quantification + g . . . . . Not 517 free variable + g . . . . . His 513 Aristotle on quantification + . . . . . Not 301 scope . . . . . . 351 scoping algorithm . . . . SbC 210 modal operator (2) + g . . . . . SbC 472 diamond g . . . . . SbC 473 box g . . . . 518 truth-funcional operator (2) g . . . . . SbC 252 iff g . . . . . SbC 253 negation . . . . Not 525 arity g . . . SbC 192 combinatory logic g . . . Par 199 recursive function theory . . . 361 formal semantics (10) + g . . . . 365 property theory . . . . 240 Montague grammar (4) . . . . . 243 sense 243 (4) g . . . . . . 203 meaning relation (5) . . . . . . . 205 hyponymy g . . . . . . . 204 antonymy g . . . . . . . 207 synonymy g . . . . . . . . 149 intensional isomorphism + . . . . . . . 206 paraphrase g . . . . . . . 108 entailment + . . . . . . 375 metaphor g . . . . . . 376 metonymy g . . . . . . 374 literal meaning . . . . . 244 sense 244 g . . . . . 241 meaning postulate . . . . . 242 ptq g . . . . . . 300 quantifying in . . . . 254 quantifier (5) + g . . . . . Not 516 bound variable + g . . . . . His 514 Frege on quantification + g . . . . . Not 517 free variable + g . . . . . His 513 Aristotle on quantification + . . . . . Not 301 scope . . . . . . 351 scoping algorithm . . . . 353 truth (4) + . . . . . 431 truth definition g . . . . . 432 truth value . . . . . 372 truth function + g . . . . . 430 truth condition . . . . 362 dynamic semantics . . . . 363 lexical semantics . . . . 366 situation semantics (2) g . . . . . 402 partiality . . . . . 400 situation . . . . . . 401 scene . . . . Not 507 compositionality . . . . 364 natural logic + . . . . Par 515 quantification (4) + . . . . . Not 516 bound variable + g . . . . . His 514 Frege on quantification + g . . . . . Not 517 free variable + g . . . . . His 513 Aristotle on quantification + . . . SbC 168 lambda calculus (4) g . . . . 170 application . . . . 172 lambda operator . . . . 169 abstraction . . . . 171 conversion . . . 38 knowledge representation (20) + g . . . . 152 frame (1) . . . . 104 database + g . . . . . 105 query g . . . . 165 situation calculus . . . . 167 temporal logic (2) + g . . . . 166 temporal logic (1) g . . . . 93 concept formation . . . . . 90 concept + . . . . . . 91 individual concept . . . . 154 logical omniscience . . . . 162 rule-based representation . . . . 157 predicate logic + g . . . . 159 procedural representation . . . . 161 representation language . . . . 156 modal logic (13) + g . . . . . Ins 512 S4 . . . . . 488 modes . . . . . 486 frame (2) . . . . . . SbC 487 frame constraints . . . . . Par 210 modal operator (2) + g . . . . . . SbC 472 diamond g . . . . . . SbC 473 box g . . . . . SbC 213 doxastic logic g . . . . . Not 489 accessability relation + . . . . . Par 471 modal language (2) g . . . . . . Par 210 modal operator (2) + g . . . . . . . SbC 472 diamond g . . . . . . . SbC 473 box g . . . . . . 490 boolean operators . . . . . SbC 211 alethic logic g . . . . . SbC 212 deontic logic (3) g . . . . . . SbC 521 standard deontic logic g . . . . . . SbC 523 two-sorted deontic logic g . . . . . . SbC 522 dyadic deontic logic g . . . . . Par 215 Kripke semantics + g . . . . . . Not 489 accessability relation + . . . . . Par 457 modal model theory (7) + . . . . . . SbC 215 Kripke semantics + g . . . . . . . Not 489 accessability relation + . . . . . . Not 461 generated submodel g . . . . . . 462 model (4) + . . . . . . . SbC 464 finite model g . . . . . . . SbC 466 image finite model . . . . . . . . Res 467 Hennessy-Milner theorem g . . . . . . . Par 463 valuation g . . . . . . . SbC 465 tree model g . . . . . . Not 459 disjoint union of models g . . . . . . 455 homomorphism (2) + g . . . . . . . SbC 456 bounded homomorphism g . . . . . . . SbC 468 bounded morphism . . . . . . Not 469 expressive power g . . . . . . . Not 470 standard translation + g . . . . . . Not 460 bisimulation g . . . . . SbC 214 epistemic logic g . . . . . Not 462 model (4) + . . . . . . SbC 464 finite model g . . . . . . SbC 466 image finite model . . . . . . . Res 467 Hennessy-Milner theorem g . . . . . . Par 463 valuation g . . . . . . SbC 465 tree model g . . . . 97 context (2) . . . . . 99 context dependence . . . . . 98 context change . . . . 160 relation system . . . . 153 frame problem g . . . . 92 concept analysis . . . . . 90 concept + . . . . . . 91 individual concept . . . . 163 script . . . . 145 idea g . . . . . 90 concept + . . . . . . 91 individual concept . . . . 164 semantic network g . . . . 247 nonmonotonic logic + g . . . . . 248 default inference . . . Par 367 semantics 367 (8) g . . . . 371 truth conditional semantics . . . . 373 truth table . . . . SbC 215 Kripke semantics + g . . . . . Not 489 accessability relation + . . . . 85 functional completeness + . . . . 370 satisfaction . . . . 369 material implication g . . . . 368 assignment . . . . Not 372 truth function + g . . . Par 201 set theory (24) + g . . . . 398 set-theoretic definability . . . . Not 391 iota operator . . . . 384 determinacy . . . . 387 fuzzy relation . . . . Not 385 filter . . . . 389 generalized continuum hypothesis . . . . 386 function (3) g . . . . . 482 hypothetical reasoning + . . . . . 509 functional application . . . . . 508 functional composition . . . . Not 394 ordinal definability . . . . Not 107 consistency + . . . . 397 set algebra . . . . 399 Suslin scheme . . . . SbC 383 descriptive set theory g . . . . 388 fuzzy set g . . . . 378 borel classification g . . . . SbC 380 combinatorial set theory . . . . Not 390 independence . . . . 381 constructibility . . . . 396 relation g . . . . 377 axiom of choice g . . . . 392 large cardinal . . . . Not 395 ordinal number . . . . 393 Martin's axiom . . . . 382 continuum hypothesis g . . . . Not 379 cardinal number . . . Par 216 abstract model theory + . . . . 254 quantifier (5) + g . . . . . Not 516 bound variable + g . . . . . His 514 Frege on quantification + g . . . . . Not 517 free variable + g . . . . . His 513 Aristotle on quantification + . . . . . Not 301 scope . . . . . . 351 scoping algorithm . . . 178 compactness + . . . His 177 aristotelean logic (2) + g . . . . Par 39 syllogism g . . . . Par 513 Aristotle on quantification + . . . Par 196 foundations of theories . . . 195 constraint programming . . Not 88 software (2) . . . 104 database + g . . . . 105 query g . . . 275 programming language (3) . . . . 190 semantics 190 (8) + g . . . . . 356 denotational semantics . . . . . 119 domain theory g . . . . . . 120 domain . . . . . 360 program analysis . . . . . 359 process model . . . . . SbC 215 Kripke semantics + g . . . . . . Not 489 accessability relation + . . . . . 357 operational semantics . . . . . 358 partial evaluation . . . . . 355 algebraic semantics . . . . 276 syntax 276 . . . . 277 prolog g . . . . . 70 resolution (7) + . . . . . . 339 purity principle . . . . . . 342 simplification . . . . . . 337 demodulation . . . . . . 338 ordering . . . . . . 340 removal of tautologies . . . . . . 341 resolution refinement (4) . . . . . . . 345 lock resolution . . . . . . . 344 hyper resolution . . . . . . . 347 theory resolution . . . . . . . 346 set of support . . . . . . 343 subsumption . . Par 34 artificial intelligence (5) g . . . Par 38 knowledge representation (20) + g . . . . 152 frame (1) . . . . 104 database + g . . . . . 105 query g . . . . 165 situation calculus . . . . 167 temporal logic (2) + g . . . . 166 temporal logic (1) g . . . . 93 concept formation . . . . . 90 concept + . . . . . . 91 individual concept . . . . 154 logical omniscience . . . . 162 rule-based representation . . . . 157 predicate logic + g . . . . 159 procedural representation . . . . 161 representation language . . . . 156 modal logic (13) + g . . . . . Ins 512 S4 . . . . . 488 modes . . . . . 486 frame (2) . . . . . . SbC 487 frame constraints . . . . . Par 210 modal operator (2) + g . . . . . . SbC 472 diamond g . . . . . . SbC 473 box g . . . . . SbC 213 doxastic logic g . . . . . Not 489 accessability relation + . . . . . Par 471 modal language (2) g . . . . . . Par 210 modal operator (2) + g . . . . . . . SbC 472 diamond g . . . . . . . SbC 473 box g . . . . . . 490 boolean operators . . . . . SbC 211 alethic logic g . . . . . SbC 212 deontic logic (3) g . . . . . . SbC 521 standard deontic logic g . . . . . . SbC 523 two-sorted deontic logic g . . . . . . SbC 522 dyadic deontic logic g . . . . . Par 215 Kripke semantics + g . . . . . . Not 489 accessability relation + . . . . . Par 457 modal model theory (7) + . . . . . . SbC 215 Kripke semantics + g . . . . . . . Not 489 accessability relation + . . . . . . Not 461 generated submodel g . . . . . . 462 model (4) + . . . . . . . SbC 464 finite model g . . . . . . . SbC 466 image finite model . . . . . . . . Res 467 Hennessy-Milner theorem g . . . . . . . Par 463 valuation g . . . . . . . SbC 465 tree model g . . . . . . Not 459 disjoint union of models g . . . . . . 455 homomorphism (2) + g . . . . . . . SbC 456 bounded homomorphism g . . . . . . . SbC 468 bounded morphism . . . . . . Not 469 expressive power g . . . . . . . Not 470 standard translation + g . . . . . . Not 460 bisimulation g . . . . . SbC 214 epistemic logic g . . . . . Not 462 model (4) + . . . . . . SbC 464 finite model g . . . . . . SbC 466 image finite model . . . . . . . Res 467 Hennessy-Milner theorem g . . . . . . Par 463 valuation g . . . . . . SbC 465 tree model g . . . . 97 context (2) . . . . . 99 context dependence . . . . . 98 context change . . . . 160 relation system . . . . 153 frame problem g . . . . 92 concept analysis . . . . . 90 concept + . . . . . . 91 individual concept . . . . 163 script . . . . 145 idea g . . . . . 90 concept + . . . . . . 91 individual concept . . . . 164 semantic network g . . . . 247 nonmonotonic logic + g . . . . . 248 default inference . . . 191 logic (1) (31) + g . . . . Par 53 automated reasoning (25) + . . . . . 35 belief revision . . . . . . 76 update . . . . . 67 nonmonotonic reasoning . . . . . 63 mathematical induction . . . . . 71 rewrite system (3) . . . . . . 350 termination . . . . . . 348 confluence . . . . . . 349 critical pair . . . . . 70 resolution (7) + . . . . . . 339 purity principle . . . . . . 342 simplification . . . . . . 337 demodulation . . . . . . 338 ordering . . . . . . 340 removal of tautologies . . . . . . 341 resolution refinement (4) . . . . . . . 345 lock resolution . . . . . . . 344 hyper resolution . . . . . . . 347 theory resolution . . . . . . . 346 set of support . . . . . . 343 subsumption . . . . . 68 paramodulation . . . . . Not 72 skolemisation . . . . . 65 model checking . . . . . 55 clause 55 (2) . . . . . . 80 horn clause g . . . . . . 79 Gentzen clause . . . . . 74 uncertainty . . . . . 75 unification + . . . . . 57 connection graph procedure . . . . . 64 metatheory . . . . . 61 literal . . . . . 58 connection matrix . . . . . 81 clause 81 . . . . . . SbC 82 relative clause . . . . . 69 reason extraction . . . . . 59 deduction (7) + . . . . . . Not 109 inconsistency . . . . . . 106 consequence g . . . . . . SbC 494 labelled deductive system . . . . . . 111 rule-based deduction . . . . . . Not 108 entailment + . . . . . . 110 natural deduction (2) + g . . . . . . . Not 482 hypothetical reasoning + . . . . . . . Not 483 normalization . . . . . . Not 107 consistency + . . . . . Res 60 Herbrand's theorem . . . . . 56 completion . . . . . . 86 Knuth Bendix completion . . . . . 73 theorem prover (3) . . . . . . 427 Bliksem g . . . . . . 428 Boyer-Moore theorem prover . . . . . . 429 SPASS g . . . . . 66 narrowing . . . . . 62 logic programming g . . . . . 54 answer extraction . . . . . 247 nonmonotonic logic + g . . . . . . 248 default inference . . . . Par 198 proof theory (22) g . . . . . SbC 503 sequent calculus . . . . . . Not 484 structural rules . . . . . 289 interpretation . . . . . 282 constructive analysis . . . . . 295 recursive ordinal . . . . . 287 Goedel numbering . . . . . 288 higher-order arithmetic . . . . . 281 complexity of proofs . . . . . 294 recursive analysis . . . . . Res 292 normal form theorem . . . . . 297 second-order arithmetic . . . . . SbC 110 natural deduction (2) + g . . . . . . Not 482 hypothetical reasoning + . . . . . . Not 483 normalization . . . . . 290 intuitionistic mathematics . . . . . 286 functionals in proof theory . . . . . 298 structure of proofs g . . . . . 283 constructive system . . . . . 291 metamathematics . . . . . 59 deduction (7) + . . . . . . Not 109 inconsistency . . . . . . 106 consequence g . . . . . . SbC 494 labelled deductive system . . . . . . 111 rule-based deduction . . . . . . Not 108 entailment + . . . . . . 110 natural deduction (2) + g . . . . . . . Not 482 hypothetical reasoning + . . . . . . . Not 483 normalization . . . . . . Not 107 consistency + . . . . . 296 relative consistency . . . . . Not 284 cut elimination theorem g . . . . . 293 ordinal notation . . . . . 285 first-order arithmetic . . . . . SbC 485 proof nets . . . . SbC 475 first order logic (4) g . . . . . 254 quantifier (5) + g . . . . . . Not 516 bound variable + g . . . . . . His 514 Frege on quantification + g . . . . . . Not 517 free variable + g . . . . . . His 513 Aristotle on quantification + . . . . . . Not 301 scope . . . . . . . 351 scoping algorithm . . . . . Par 476 first order language g . . . . . . Not 477 fragment (3) g . . . . . . . SbC 479 finite-variable fragment g . . . . . . . SbC 480 guarded fragment g . . . . . . . SbC 478 modal fragment g . . . . . . . . Not 470 standard translation + g . . . . . 511 SPASS g . . . . . Par 515 quantification (4) + . . . . . . Not 516 bound variable + g . . . . . . His 514 Frege on quantification + g . . . . . . Not 517 free variable + g . . . . . . His 513 Aristotle on quantification + . . . . 193 computability theory . . . . SbC 167 temporal logic (2) + g . . . . 435 type theory (2) + . . . . . 433 type . . . . . . 434 type shifting . . . . . Not 23 polymorphism + g . . . . 495 substructural logic . . . . SbC 200 relevance logic + . . . . . 108 entailment + . . . . Res 180 Lindstroem's theorem + . . . . SbC 481 linear logic . . . . 526 variable g . . . . . SbC 517 free variable + g . . . . Res 179 Goedel's 1st incompleteness theorem (1931) + g . . . . SbC 125 feature logic + . . . . . 75 unification + . . . . 197 model theory (29) . . . . . 237 set-theoretic model theory . . . . . 11 universal algebra + . . . . . 225 infinitary logic . . . . . 217 admissible set . . . . . 234 recursion-theoretic model theory . . . . . 239 ultraproduct . . . . . 227 logic with extra quantifiers . . . . . SbC 457 modal model theory (7) + . . . . . . SbC 215 Kripke semantics + g . . . . . . . Not 489 accessability relation + . . . . . . Not 461 generated submodel g . . . . . . 462 model (4) + . . . . . . . SbC 464 finite model g . . . . . . . SbC 466 image finite model . . . . . . . . Res 467 Hennessy-Milner theorem g . . . . . . . Par 463 valuation g . . . . . . . SbC 465 tree model g . . . . . . Not 459 disjoint union of models g . . . . . . 455 homomorphism (2) + g . . . . . . . SbC 456 bounded homomorphism g . . . . . . . SbC 468 bounded morphism . . . . . . Not 469 expressive power g . . . . . . . Not 470 standard translation + g . . . . . . Not 460 bisimulation g . . . . . 219 completeness of theories . . . . . 235 saturation . . . . . 222 equational class . . . . . 238 stability . . . . . 233 quantifier elimination . . . . . 221 denumerable structure . . . . . 228 model-theoretic algebra . . . . . 236 second-order model theory . . . . . 230 model of arithmetic . . . . . 218 categoricity g . . . . . 220 definability . . . . . 226 interpolation . . . . . SbC 454 first order model theory . . . . . . 455 homomorphism (2) + g . . . . . . . SbC 456 bounded homomorphism g . . . . . . . SbC 468 bounded morphism . . . . . 231 nonclassical model (2) . . . . . . 246 sheaf model . . . . . . 245 boolean valued . . . . . 201 set theory (24) + g . . . . . . 398 set-theoretic definability . . . . . . Not 391 iota operator . . . . . . 384 determinacy . . . . . . 387 fuzzy relation . . . . . . Not 385 filter . . . . . . 389 generalized continuum hypothesis . . . . . . 386 function (3) g . . . . . . . 482 hypothetical reasoning + . . . . . . . 509 functional application . . . . . . . 508 functional composition . . . . . . Not 394 ordinal definability . . . . . . Not 107 consistency + . . . . . . 397 set algebra . . . . . . 399 Suslin scheme . . . . . . SbC 383 descriptive set theory g . . . . . . 388 fuzzy set g . . . . . . 378 borel classification g . . . . . . SbC 380 combinatorial set theory . . . . . . Not 390 independence . . . . . . 381 constructibility . . . . . . 396 relation g . . . . . . 377 axiom of choice g . . . . . . 392 large cardinal . . . . . . Not 395 ordinal number . . . . . . 393 Martin's axiom . . . . . . 382 continuum hypothesis g . . . . . . Not 379 cardinal number . . . . . 232 preservation . . . . . 216 abstract model theory + . . . . . . 254 quantifier (5) + g . . . . . . . Not 516 bound variable + g . . . . . . . His 514 Frege on quantification + g . . . . . . . Not 517 free variable + g . . . . . . . His 513 Aristotle on quantification + . . . . . . . Not 301 scope . . . . . . . . 351 scoping algorithm . . . . . 229 model-theoretic forcing . . . . . 224 higher-order model theory . . . . . Par 493 correspondence theory . . . . . 223 finite structure . . . . Res 182 Loewenheim-Skolem-Tarski theorem + . . . . Not 83 completeness (2) + g . . . . . SbC 84 axiomatic completeness . . . . . SbC 85 functional completeness + . . . . SbC 156 modal logic (13) + g . . . . . Ins 512 S4 . . . . . 488 modes . . . . . 486 frame (2) . . . . . . SbC 487 frame constraints . . . . . Par 210 modal operator (2) + g . . . . . . SbC 472 diamond g . . . . . . SbC 473 box g . . . . . SbC 213 doxastic logic g . . . . . Not 489 accessability relation + . . . . . Par 471 modal language (2) g . . . . . . Par 210 modal operator (2) + g . . . . . . . SbC 472 diamond g . . . . . . . SbC 473 box g . . . . . . 490 boolean operators . . . . . SbC 211 alethic logic g . . . . . SbC 212 deontic logic (3) g . . . . . . SbC 521 standard deontic logic g . . . . . . SbC 523 two-sorted deontic logic g . . . . . . SbC 522 dyadic deontic logic g . . . . . Par 215 Kripke semantics + g . . . . . . Not 489 accessability relation + . . . . . Par 457 modal model theory (7) + . . . . . . SbC 215 Kripke semantics + g . . . . . . . Not 489 accessability relation + . . . . . . Not 461 generated submodel g . . . . . . 462 model (4) + . . . . . . . SbC 464 finite model g . . . . . . . SbC 466 image finite model . . . . . . . . Res 467 Hennessy-Milner theorem g . . . . . . . Par 463 valuation g . . . . . . . SbC 465 tree model g . . . . . . Not 459 disjoint union of models g . . . . . . 455 homomorphism (2) + g . . . . . . . SbC 456 bounded homomorphism g . . . . . . . SbC 468 bounded morphism . . . . . . Not 469 expressive power g . . . . . . . Not 470 standard translation + g . . . . . . Not 460 bisimulation g . . . . . SbC 214 epistemic logic g . . . . . Not 462 model (4) + . . . . . . SbC 464 finite model g . . . . . . SbC 466 image finite model . . . . . . . Res 467 Hennessy-Milner theorem g . . . . . . Par 463 valuation g . . . . . . SbC 465 tree model g . . . . 194 computational logic (2) . . . . Not 183 operator (4) + g . . . . . 254 quantifier (5) + g . . . . . . Not 516 bound variable + g . . . . . . His 514 Frege on quantification + g . . . . . . Not 517 free variable + g . . . . . . His 513 Aristotle on quantification + . . . . . . Not 301 scope . . . . . . . 351 scoping algorithm . . . . . SbC 210 modal operator (2) + g . . . . . . SbC 472 diamond g . . . . . . SbC 473 box g . . . . . 518 truth-funcional operator (2) g . . . . . . SbC 252 iff g . . . . . . SbC 253 negation . . . . . Not 525 arity g . . . . SbC 192 combinatory logic g . . . . Par 199 recursive function theory . . . . 361 formal semantics (10) + g . . . . . 365 property theory . . . . . 240 Montague grammar (4) . . . . . . 243 sense 243 (4) g . . . . . . . 203 meaning relation (5) . . . . . . . . 205 hyponymy g . . . . . . . . 204 antonymy g . . . . . . . . 207 synonymy g . . . . . . . . . 149 intensional isomorphism + . . . . . . . . 206 paraphrase g . . . . . . . . 108 entailment + . . . . . . . 375 metaphor g . . . . . . . 376 metonymy g . . . . . . . 374 literal meaning . . . . . . 244 sense 244 g . . . . . . 241 meaning postulate . . . . . . 242 ptq g . . . . . . . 300 quantifying in . . . . . 254 quantifier (5) + g . . . . . . Not 516 bound variable + g . . . . . . His 514 Frege on quantification + g . . . . . . Not 517 free variable + g . . . . . . His 513 Aristotle on quantification + . . . . . . Not 301 scope . . . . . . . 351 scoping algorithm . . . . . 353 truth (4) + . . . . . . 431 truth definition g . . . . . . 432 truth value . . . . . . 372 truth function + g . . . . . . 430 truth condition . . . . . 362 dynamic semantics . . . . . 363 lexical semantics . . . . . 366 situation semantics (2) g . . . . . . 402 partiality . . . . . . 400 situation . . . . . . . 401 scene . . . . . Not 507 compositionality . . . . . 364 natural logic + . . . . . Par 515 quantification (4) + . . . . . . Not 516 bound variable + g . . . . . . His 514 Frege on quantification + g . . . . . . Not 517 free variable + g . . . . . . His 513 Aristotle on quantification + . . . . SbC 168 lambda calculus (4) g . . . . . 170 application . . . . . 172 lambda operator . . . . . 169 abstraction . . . . . 171 conversion . . . . 38 knowledge representation (20) + g . . . . . 152 frame (1) . . . . . 104 database + g . . . . . . 105 query g . . . . . 165 situation calculus . . . . . 167 temporal logic (2) + g . . . . . 166 temporal logic (1) g . . . . . 93 concept formation . . . . . . 90 concept + . . . . . . . 91 individual concept . . . . . 154 logical omniscience . . . . . 162 rule-based representation . . . . . 157 predicate logic + g . . . . . 159 procedural representation . . . . . 161 representation language . . . . . 156 modal logic (13) + g . . . . . . Ins 512 S4 . . . . . . 488 modes . . . . . . 486 frame (2) . . . . . . . SbC 487 frame constraints . . . . . . Par 210 modal operator (2) + g . . . . . . . SbC 472 diamond g . . . . . . . SbC 473 box g . . . . . . SbC 213 doxastic logic g . . . . . . Not 489 accessability relation + . . . . . . Par 471 modal language (2) g . . . . . . . Par 210 modal operator (2) + g . . . . . . . . SbC 472 diamond g . . . . . . . . SbC 473 box g . . . . . . . 490 boolean operators . . . . . . SbC 211 alethic logic g . . . . . . SbC 212 deontic logic (3) g . . . . . . . SbC 521 standard deontic logic g . . . . . . . SbC 523 two-sorted deontic logic g . . . . . . . SbC 522 dyadic deontic logic g . . . . . . Par 215 Kripke semantics + g . . . . . . . Not 489 accessability relation + . . . . . . Par 457 modal model theory (7) + . . . . . . . SbC 215 Kripke semantics + g . . . . . . . . Not 489 accessability relation + . . . . . . . Not 461 generated submodel g . . . . . . . 462 model (4) + . . . . . . . . SbC 464 finite model g . . . . . . . . SbC 466 image finite model . . . . . . . . . Res 467 Hennessy-Milner theorem g . . . . . . . . Par 463 valuation g . . . . . . . . SbC 465 tree model g . . . . . . . Not 459 disjoint union of models g . . . . . . . 455 homomorphism (2) + g . . . . . . . . SbC 456 bounded homomorphism g . . . . . . . . SbC 468 bounded morphism . . . . . . . Not 469 expressive power g . . . . . . . . Not 470 standard translation + g . . . . . . . Not 460 bisimulation g . . . . . . SbC 214 epistemic logic g . . . . . . Not 462 model (4) + . . . . . . . SbC 464 finite model g . . . . . . . SbC 466 image finite model . . . . . . . . Res 467 Hennessy-Milner theorem g . . . . . . . Par 463 valuation g . . . . . . . SbC 465 tree model g . . . . . 97 context (2) . . . . . . 99 context dependence . . . . . . 98 context change . . . . . 160 relation system . . . . . 153 frame problem g . . . . . 92 concept analysis . . . . . . 90 concept + . . . . . . . 91 individual concept . . . . . 163 script . . . . . 145 idea g . . . . . . 90 concept + . . . . . . . 91 individual concept . . . . . 164 semantic network g . . . . . 247 nonmonotonic logic + g . . . . . . 248 default inference . . . . Par 367 semantics 367 (8) g . . . . . 371 truth conditional semantics . . . . . 373 truth table . . . . . SbC 215 Kripke semantics + g . . . . . . Not 489 accessability relation + . . . . . 85 functional completeness + . . . . . 370 satisfaction . . . . . 369 material implication g . . . . . 368 assignment . . . . . Not 372 truth function + g . . . . Par 201 set theory (24) + g . . . . . 398 set-theoretic definability . . . . . Not 391 iota operator . . . . . 384 determinacy . . . . . 387 fuzzy relation . . . . . Not 385 filter . . . . . 389 generalized continuum hypothesis . . . . . 386 function (3) g . . . . . . 482 hypothetical reasoning + . . . . . . 509 functional application . . . . . . 508 functional composition . . . . . Not 394 ordinal definability . . . . . Not 107 consistency + . . . . . 397 set algebra . . . . . 399 Suslin scheme . . . . . SbC 383 descriptive set theory g . . . . . 388 fuzzy set g . . . . . 378 borel classification g . . . . . SbC 380 combinatorial set theory . . . . . Not 390 independence . . . . . 381 constructibility . . . . . 396 relation g . . . . . 377 axiom of choice g . . . . . 392 large cardinal . . . . . Not 395 ordinal number . . . . . 393 Martin's axiom . . . . . 382 continuum hypothesis g . . . . . Not 379 cardinal number . . . . Par 216 abstract model theory + . . . . . 254 quantifier (5) + g . . . . . . Not 516 bound variable + g . . . . . . His 514 Frege on quantification + g . . . . . . Not 517 free variable + g . . . . . . His 513 Aristotle on quantification + . . . . . . Not 301 scope . . . . . . . 351 scoping algorithm . . . . 178 compactness + . . . . His 177 aristotelean logic (2) + g . . . . . Par 39 syllogism g . . . . . Par 513 Aristotle on quantification + . . . . Par 196 foundations of theories . . . . 195 constraint programming . . . 40 planning . . . Not 36 classification . . . Not 37 heuristic g . . Par 89 theory of computation (4) g . . . Par 127 formal language theory (10) g . . . . 128 categorial grammar + . . . . . SbC 528 combinatorial categorial grammar . . . . 131 context free language g . . . . 130 Chomsky hierarchy g . . . . 134 phrase structure grammar . . . . 129 category . . . . 135 recursive language + g . . . . 137 unrestricted language g . . . . 136 regular language . . . . 132 context sensitive language g . . . . 133 feature constraint . . . Par 302 recursion theory (31) g . . . . 306 complexity of computation . . . . 330 undecidability . . . . 328 theory of numerations . . . . 309 effectively presented structure . . . . 314 isol . . . . 307 decidability (2) g . . . . . 474 tree model property g . . . . . 504 subformula property . . . . 322 recursively enumerable degree . . . . 331 word problem . . . . 327 subrecursive hierarchy . . . . 315 post system . . . . 324 recursively enumerable set . . . . 320 recursive function . . . . 318 recursive axiomatizability . . . . 329 thue system . . . . 325 reducibility . . . . 304 automaton . . . . 310 formal grammar . . . . 326 set recursion theory . . . . 303 abstract recursion theory . . . . 323 recursively enumerable language . . . . 305 axiomatic recursion theory . . . . 135 recursive language + g . . . . 313 inductive definability . . . . 316 recursion theory on admissible sets . . . . Not 52 Turing machine + . . . . 308 degrees of sets of sentences . . . . 319 recursive equivalence type . . . . 312 higher type recursion theory . . . . 317 recursion theory on ordinals . . . . 321 recursive relation . . . . 311 hierarchy . . . Par 185 computational logic (1) (8) g . . . . 190 semantics 190 (8) + g . . . . . 356 denotational semantics . . . . . 119 domain theory g . . . . . . 120 domain . . . . . 360 program analysis . . . . . 359 process model . . . . . SbC 215 Kripke semantics + g . . . . . . Not 489 accessability relation + . . . . . 357 operational semantics . . . . . 358 partial evaluation . . . . . 355 algebraic semantics . . . . 189 reasoning about programs . . . . 53 automated reasoning (25) + . . . . . 35 belief revision . . . . . . 76 update . . . . . 67 nonmonotonic reasoning . . . . . 63 mathematical induction . . . . . 71 rewrite system (3) . . . . . . 350 termination . . . . . . 348 confluence . . . . . . 349 critical pair . . . . . 70 resolution (7) + . . . . . . 339 purity principle . . . . . . 342 simplification . . . . . . 337 demodulation . . . . . . 338 ordering . . . . . . 340 removal of tautologies . . . . . . 341 resolution refinement (4) . . . . . . . 345 lock resolution . . . . . . . 344 hyper resolution . . . . . . . 347 theory resolution . . . . . . . 346 set of support . . . . . . 343 subsumption . . . . . 68 paramodulation . . . . . Not 72 skolemisation . . . . . 65 model checking . . . . . 55 clause 55 (2) . . . . . . 80 horn clause g . . . . . . 79 Gentzen clause . . . . . 74 uncertainty . . . . . 75 unification + . . . . . 57 connection graph procedure . . . . . 64 metatheory . . . . . 61 literal . . . . . 58 connection matrix . . . . . 81 clause 81 . . . . . . SbC 82 relative clause . . . . . 69 reason extraction . . . . . 59 deduction (7) + . . . . . . Not 109 inconsistency . . . . . . 106 consequence g . . . . . . SbC 494 labelled deductive system . . . . . . 111 rule-based deduction . . . . . . Not 108 entailment + . . . . . . 110 natural deduction (2) + g . . . . . . . Not 482 hypothetical reasoning + . . . . . . . Not 483 normalization . . . . . . Not 107 consistency + . . . . . Res 60 Herbrand's theorem . . . . . 56 completion . . . . . . 86 Knuth Bendix completion . . . . . 73 theorem prover (3) . . . . . . 427 Bliksem g . . . . . . 428 Boyer-Moore theorem prover . . . . . . 429 SPASS g . . . . . 66 narrowing . . . . . 62 logic programming g . . . . . 54 answer extraction . . . . . 247 nonmonotonic logic + g . . . . . . 248 default inference . . . . Not 83 completeness (2) + g . . . . . SbC 84 axiomatic completeness . . . . . SbC 85 functional completeness + . . . . 188 program verification (4) . . . . . 274 mechanical verification . . . . . 269 invariant + . . . . . 273 logic of programs . . . . . 43 assertion (2) + . . . . . . 45 imperative assertion . . . . . . 44 declarative assertion . . . . 435 type theory (2) + . . . . . 433 type . . . . . . 434 type shifting . . . . . Not 23 polymorphism + g . . . . 186 program construct (5) . . . . . 265 functional construct . . . . . 267 program scheme . . . . . 266 object oriented construct . . . . . 264 control primitive . . . . . 268 type structure . . . . 187 program specification (5) . . . . . 271 pre-condition . . . . . 269 invariant + . . . . . 272 specification technique . . . . . 43 assertion (2) + . . . . . . 45 imperative assertion . . . . . . 44 declarative assertion . . . . . 270 post-condition . . . Par 48 automata theory (4) . . . . Not 52 Turing machine + . . . . 50 linear bounded automaton . . . . 49 finite state machine g . . . . 51 push down automaton . 173 linguistics (13) g . . Par 446 descriptive linguistics g . . . 142 grammar (5) g . . . . Not 519 derivation g . . . . 452 grammatical constituent g . . . . . 121 ellipsis g . . . . . . 122 antecedent of ellipsis . . . . 444 linguistic unit (3) g . . . . . SbC 440 word (5) g . . . . . . 28 anaphor (2) g . . . . . . . 30 antecedent of an anaphor . . . . . . . 29 anaphora resolution . . . . . . 278 pronoun (2) g . . . . . . . 280 pronoun resolution . . . . . . . 279 demonstrative g . . . . . . 138 function word (2) g . . . . . . . SbC 139 determiner g . . . . . . . SbC 441 modifier g . . . . . . . . 445 adjective (4) g . . . . . . . . . 4 predicative position . . . . . . . . . 1 adverbial modification g . . . . . . . . . 3 intersective adjective . . . . . . . . . 2 graded adjective . . . . . . 442 content word g . . . . . . 425 term (2) g . . . . . . . 426 singular term g . . . . . . . 260 plural term (2) g . . . . . . . . 261 collective reading . . . . . . . . 262 distributive reading . . . . . SbC 500 quantified phrases + . . . . . SbC 115 discourse (3) g . . . . . . 116 discourse particle . . . . . . 118 discourse representation theory g . . . . . . 117 discourse referent . . . . 144 syntax 144 (2) g . . . . . 453 logical syntax g . . . . . . 12 algebraic logic (10) + . . . . . . . 6 boolean algebra + . . . . . . . . SbC 7 boolean algebra with operators . . . . . . . 17 post algebra . . . . . . . 15 Lukasiewicz algebra . . . . . . . 14 cylindric algebra g . . . . . . . 8 lattice + g . . . . . . . 18 quantum logic . . . . . . . 10 relation algebra + . . . . . . . 13 categorical logic . . . . . . . 16 polyadic algebra . . . . . . . 19 topos . . . . . 423 syntactic category (3) g . . . . . . 447 part of speech g . . . . . . SbC 249 noun (2) g . . . . . . . SbC 251 proper name . . . . . . . SbC 250 mass noun g . . . . . . SbC 438 verb g . . . . . . . SbC 439 perception verb . . . . 143 sentence g . . 443 linguistic geography g . . Not 502 discontinuity . . Par 361 formal semantics (10) + g . . . 365 property theory . . . 240 Montague grammar (4) . . . . 243 sense 243 (4) g . . . . . 203 meaning relation (5) . . . . . . 205 hyponymy g . . . . . . 204 antonymy g . . . . . . 207 synonymy g . . . . . . . 149 intensional isomorphism + . . . . . . 206 paraphrase g . . . . . . 108 entailment + . . . . . 375 metaphor g . . . . . 376 metonymy g . . . . . 374 literal meaning . . . . 244 sense 244 g . . . . 241 meaning postulate . . . . 242 ptq g . . . . . 300 quantifying in . . . 254 quantifier (5) + g . . . . Not 516 bound variable + g . . . . His 514 Frege on quantification + g . . . . Not 517 free variable + g . . . . His 513 Aristotle on quantification + . . . . Not 301 scope . . . . . 351 scoping algorithm . . . 353 truth (4) + . . . . 431 truth definition g . . . . 432 truth value . . . . 372 truth function + g . . . . 430 truth condition . . . 362 dynamic semantics . . . 363 lexical semantics . . . 366 situation semantics (2) g . . . . 402 partiality . . . . 400 situation . . . . . 401 scene . . . Not 507 compositionality . . . 364 natural logic + . . . Par 515 quantification (4) + . . . . Not 516 bound variable + g . . . . His 514 Frege on quantification + g . . . . Not 517 free variable + g . . . . His 513 Aristotle on quantification + . . Not 20 ambiguity (7) g . . . SbC 27 syntactic ambiguity . . . SbC 25 semantic ambiguity + g . . . SbC 22 lexical ambiguity g . . . SbC 21 derivational ambiguity . . . SbC 24 pragmatic ambiguity . . . SbC 26 structural ambiguity . . . 23 polymorphism + g . . 510 frameworks (7) . . . 535 LFG . . . 128 categorial grammar + . . . . SbC 528 combinatorial categorial grammar . . . 530 TAG . . . 532 DRT . . . 529 GB . . . 534 HPSG . . . 531 dynamic syntax . . 506 linguistic phenomena . . Not 174 language acquisition g . . Par 450 pragmatics (2) g . . . 403 speech act (5) g . . . . 408 statement (2) g . . . . . 112 description (2) g . . . . . . SbC 114 indefinite description . . . . . . SbC 113 definite description . . . . . 409 indicative statement . . . . 405 indirect speech act . . . . 406 performative . . . . 407 performative hypothesis . . . . 404 illocutionary force . . . 100 conversational maxim (3) g . . . . 103 implicature + g . . . . 102 cooperative principle . . . . 101 conversational implicature g . . 499 syntax and semantic interface + . . Par 175 semantics 175 (16) g . . . 25 semantic ambiguity + g . . . Not 123 extension g . . . . 124 extensionality g . . . 334 referent g . . . Not 332 reference (2) g . . . . 333 identity puzzle . . . . 335 referential term . . . . . SbC 336 anchor . . . Not 263 presupposition g . . . . 103 implicature + g . . . Not 146 indexicality . . . . 147 indexical expression g . . . Par 41 aspect . . . . 42 aspectual classification . . . SbC 361 formal semantics (10) + g . . . . 365 property theory . . . . 240 Montague grammar (4) . . . . . 243 sense 243 (4) g . . . . . . 203 meaning relation (5) . . . . . . . 205 hyponymy g . . . . . . . 204 antonymy g . . . . . . . 207 synonymy g . . . . . . . . 149 intensional isomorphism + . . . . . . . 206 paraphrase g . . . . . . . 108 entailment + . . . . . . 375 metaphor g . . . . . . 376 metonymy g . . . . . . 374 literal meaning . . . . . 244 sense 244 g . . . . . 241 meaning postulate . . . . . 242 ptq g . . . . . . 300 quantifying in . . . . 254 quantifier (5) + g . . . . . Not 516 bound variable + g . . . . . His 514 Frege on quantification + g . . . . . Not 517 free variable + g . . . . . His 513 Aristotle on quantification + . . . . . Not 301 scope . . . . . . 351 scoping algorithm . . . . 353 truth (4) + . . . . . 431 truth definition g . . . . . 432 truth value . . . . . 372 truth function + g . . . . . 430 truth condition . . . . 362 dynamic semantics . . . . 363 lexical semantics . . . . 366 situation semantics (2) g . . . . . 402 partiality . . . . . 400 situation . . . . . . 401 scene . . . . Not 507 compositionality . . . . 364 natural logic + . . . . Par 515 quantification (4) + . . . . . Not 516 bound variable + g . . . . . His 514 Frege on quantification + g . . . . . Not 517 free variable + g . . . . . His 513 Aristotle on quantification + . . . Not 501 coordination . . . Not 353 truth (4) + . . . . 431 truth definition g . . . . 432 truth value . . . . 372 truth function + g . . . . 430 truth condition . . . Not 354 underspecification (2) . . . . 437 quasi-logical form . . . . 436 monotonic semantics . . . 499 syntax and semantic interface + . . . Par 46 attitude . . . . SbC 47 propositional attitude . . . . . Not 299 belief . . . Not 500 quantified phrases + . . . Not 148 intension (3) g . . . . 149 intensional isomorphism + . . . . 151 intensionality . . . . 150 intensional verb . . . 31 animal (3) g . . . . SbC 33 unicorn . . . . SbC 32 donkey . . . . SbC 352 rabbit . . Par 496 syntax 496 (2) g . . . Par 498 word order . . . Par 497 movement . . Par 140 language generation . . . 141 reversibility . 202 mathematics (5) g . . Not 527 algebra 2 g . . 191 logic (1) (31) + g . . . Par 53 automated reasoning (25) + . . . . 35 belief revision . . . . . 76 update . . . . 67 nonmonotonic reasoning . . . . 63 mathematical induction . . . . 71 rewrite system (3) . . . . . 350 termination . . . . . 348 confluence . . . . . 349 critical pair . . . . 70 resolution (7) + . . . . . 339 purity principle . . . . . 342 simplification . . . . . 337 demodulation . . . . . 338 ordering . . . . . 340 removal of tautologies . . . . . 341 resolution refinement (4) . . . . . . 345 lock resolution . . . . . . 344 hyper resolution . . . . . . 347 theory resolution . . . . . . 346 set of support . . . . . 343 subsumption . . . . 68 paramodulation . . . . Not 72 skolemisation . . . . 65 model checking . . . . 55 clause 55 (2) . . . . . 80 horn clause g . . . . . 79 Gentzen clause . . . . 74 uncertainty . . . . 75 unification + . . . . 57 connection graph procedure . . . . 64 metatheory . . . . 61 literal . . . . 58 connection matrix . . . . 81 clause 81 . . . . . SbC 82 relative clause . . . . 69 reason extraction . . . . 59 deduction (7) + . . . . . Not 109 inconsistency . . . . . 106 consequence g . . . . . SbC 494 labelled deductive system . . . . . 111 rule-based deduction . . . . . Not 108 entailment + . . . . . 110 natural deduction (2) + g . . . . . . Not 482 hypothetical reasoning + . . . . . . Not 483 normalization . . . . . Not 107 consistency + . . . . Res 60 Herbrand's theorem . . . . 56 completion . . . . . 86 Knuth Bendix completion . . . . 73 theorem prover (3) . . . . . 427 Bliksem g . . . . . 428 Boyer-Moore theorem prover . . . . . 429 SPASS g . . . . 66 narrowing . . . . 62 logic programming g . . . . 54 answer extraction . . . . 247 nonmonotonic logic + g . . . . . 248 default inference . . . Par 198 proof theory (22) g . . . . SbC 503 sequent calculus . . . . . Not 484 structural rules . . . . 289 interpretation . . . . 282 constructive analysis . . . . 295 recursive ordinal . . . . 287 Goedel numbering . . . . 288 higher-order arithmetic . . . . 281 complexity of proofs . . . . 294 recursive analysis . . . . Res 292 normal form theorem . . . . 297 second-order arithmetic . . . . SbC 110 natural deduction (2) + g . . . . . Not 482 hypothetical reasoning + . . . . . Not 483 normalization . . . . 290 intuitionistic mathematics . . . . 286 functionals in proof theory . . . . 298 structure of proofs g . . . . 283 constructive system . . . . 291 metamathematics . . . . 59 deduction (7) + . . . . . Not 109 inconsistency . . . . . 106 consequence g . . . . . SbC 494 labelled deductive system . . . . . 111 rule-based deduction . . . . . Not 108 entailment + . . . . . 110 natural deduction (2) + g . . . . . . Not 482 hypothetical reasoning + . . . . . . Not 483 normalization . . . . . Not 107 consistency + . . . . 296 relative consistency . . . . Not 284 cut elimination theorem g . . . . 293 ordinal notation . . . . 285 first-order arithmetic . . . . SbC 485 proof nets . . . SbC 475 first order logic (4) g . . . . 254 quantifier (5) + g . . . . . Not 516 bound variable + g . . . . . His 514 Frege on quantification + g . . . . . Not 517 free variable + g . . . . . His 513 Aristotle on quantification + . . . . . Not 301 scope . . . . . . 351 scoping algorithm . . . . Par 476 first order language g . . . . . Not 477 fragment (3) g . . . . . . SbC 479 finite-variable fragment g . . . . . . SbC 480 guarded fragment g . . . . . . SbC 478 modal fragment g . . . . . . . Not 470 standard translation + g . . . . 511 SPASS g . . . . Par 515 quantification (4) + . . . . . Not 516 bound variable + g . . . . . His 514 Frege on quantification + g . . . . . Not 517 free variable + g . . . . . His 513 Aristotle on quantification + . . . 193 computability theory . . . SbC 167 temporal logic (2) + g . . . 435 type theory (2) + . . . . 433 type . . . . . 434 type shifting . . . . Not 23 polymorphism + g . . . 495 substructural logic . . . SbC 200 relevance logic + . . . . 108 entailment + . . . Res 180 Lindstroem's theorem + . . . SbC 481 linear logic . . . 526 variable g . . . . SbC 517 free variable + g . . . Res 179 Goedel's 1st incompleteness theorem (1931) + g . . . SbC 125 feature logic + . . . . 75 unification + . . . 197 model theory (29) . . . . 237 set-theoretic model theory . . . . 11 universal algebra + . . . . 225 infinitary logic . . . . 217 admissible set . . . . 234 recursion-theoretic model theory . . . . 239 ultraproduct . . . . 227 logic with extra quantifiers . . . . SbC 457 modal model theory (7) + . . . . . SbC 215 Kripke semantics + g . . . . . . Not 489 accessability relation + . . . . . Not 461 generated submodel g . . . . . 462 model (4) + . . . . . . SbC 464 finite model g . . . . . . SbC 466 image finite model . . . . . . . Res 467 Hennessy-Milner theorem g . . . . . . Par 463 valuation g . . . . . . SbC 465 tree model g . . . . . Not 459 disjoint union of models g . . . . . 455 homomorphism (2) + g . . . . . . SbC 456 bounded homomorphism g . . . . . . SbC 468 bounded morphism . . . . . Not 469 expressive power g . . . . . . Not 470 standard translation + g . . . . . Not 460 bisimulation g . . . . 219 completeness of theories . . . . 235 saturation . . . . 222 equational class . . . . 238 stability . . . . 233 quantifier elimination . . . . 221 denumerable structure . . . . 228 model-theoretic algebra . . . . 236 second-order model theory . . . . 230 model of arithmetic . . . . 218 categoricity g . . . . 220 definability . . . . 226 interpolation . . . . SbC 454 first order model theory . . . . . 455 homomorphism (2) + g . . . . . . SbC 456 bounded homomorphism g . . . . . . SbC 468 bounded morphism . . . . 231 nonclassical model (2) . . . . . 246 sheaf model . . . . . 245 boolean valued . . . . 201 set theory (24) + g . . . . . 398 set-theoretic definability . . . . . Not 391 iota operator . . . . . 384 determinacy . . . . . 387 fuzzy relation . . . . . Not 385 filter . . . . . 389 generalized continuum hypothesis . . . . . 386 function (3) g . . . . . . 482 hypothetical reasoning + . . . . . . 509 functional application . . . . . . 508 functional composition . . . . . Not 394 ordinal definability . . . . . Not 107 consistency + . . . . . 397 set algebra . . . . . 399 Suslin scheme . . . . . SbC 383 descriptive set theory g . . . . . 388 fuzzy set g . . . . . 378 borel classification g . . . . . SbC 380 combinatorial set theory . . . . . Not 390 independence . . . . . 381 constructibility . . . . . 396 relation g . . . . . 377 axiom of choice g . . . . . 392 large cardinal . . . . . Not 395 ordinal number . . . . . 393 Martin's axiom . . . . . 382 continuum hypothesis g . . . . . Not 379 cardinal number . . . . 232 preservation . . . . 216 abstract model theory + . . . . . 254 quantifier (5) + g . . . . . . Not 516 bound variable + g . . . . . . His 514 Frege on quantification + g . . . . . . Not 517 free variable + g . . . . . . His 513 Aristotle on quantification + . . . . . . Not 301 scope . . . . . . . 351 scoping algorithm . . . . 229 model-theoretic forcing . . . . 224 higher-order model theory . . . . Par 493 correspondence theory . . . . 223 finite structure . . . Res 182 Loewenheim-Skolem-Tarski theorem + . . . Not 83 completeness (2) + g . . . . SbC 84 axiomatic completeness . . . . SbC 85 functional completeness + . . . SbC 156 modal logic (13) + g . . . . Ins 512 S4 . . . . 488 modes . . . . 486 frame (2) . . . . . SbC 487 frame constraints . . . . Par 210 modal operator (2) + g . . . . . SbC 472 diamond g . . . . . SbC 473 box g . . . . SbC 213 doxastic logic g . . . . Not 489 accessability relation + . . . . Par 471 modal language (2) g . . . . . Par 210 modal operator (2) + g . . . . . . SbC 472 diamond g . . . . . . SbC 473 box g . . . . . 490 boolean operators . . . . SbC 211 alethic logic g . . . . SbC 212 deontic logic (3) g . . . . . SbC 521 standard deontic logic g . . . . . SbC 523 two-sorted deontic logic g . . . . . SbC 522 dyadic deontic logic g . . . . Par 215 Kripke semantics + g . . . . . Not 489 accessability relation + . . . . Par 457 modal model theory (7) + . . . . . SbC 215 Kripke semantics + g . . . . . . Not 489 accessability relation + . . . . . Not 461 generated submodel g . . . . . 462 model (4) + . . . . . . SbC 464 finite model g . . . . . . SbC 466 image finite model . . . . . . . Res 467 Hennessy-Milner theorem g . . . . . . Par 463 valuation g . . . . . . SbC 465 tree model g . . . . . Not 459 disjoint union of models g . . . . . 455 homomorphism (2) + g . . . . . . SbC 456 bounded homomorphism g . . . . . . SbC 468 bounded morphism . . . . . Not 469 expressive power g . . . . . . Not 470 standard translation + g . . . . . Not 460 bisimulation g . . . . SbC 214 epistemic logic g . . . . Not 462 model (4) + . . . . . SbC 464 finite model g . . . . . SbC 466 image finite model . . . . . . Res 467 Hennessy-Milner theorem g . . . . . Par 463 valuation g . . . . . SbC 465 tree model g . . . 194 computational logic (2) . . . Not 183 operator (4) + g . . . . 254 quantifier (5) + g . . . . . Not 516 bound variable + g . . . . . His 514 Frege on quantification + g . . . . . Not 517 free variable + g . . . . . His 513 Aristotle on quantification + . . . . . Not 301 scope . . . . . . 351 scoping algorithm . . . . SbC 210 modal operator (2) + g . . . . . SbC 472 diamond g . . . . . SbC 473 box g . . . . 518 truth-funcional operator (2) g . . . . . SbC 252 iff g . . . . . SbC 253 negation . . . . Not 525 arity g . . . SbC 192 combinatory logic g . . . Par 199 recursive function theory . . . 361 formal semantics (10) + g . . . . 365 property theory . . . . 240 Montague grammar (4) . . . . . 243 sense 243 (4) g . . . . . . 203 meaning relation (5) . . . . . . . 205 hyponymy g . . . . . . . 204 antonymy g . . . . . . . 207 synonymy g . . . . . . . . 149 intensional isomorphism + . . . . . . . 206 paraphrase g . . . . . . . 108 entailment + . . . . . . 375 metaphor g . . . . . . 376 metonymy g . . . . . . 374 literal meaning . . . . . 244 sense 244 g . . . . . 241 meaning postulate . . . . . 242 ptq g . . . . . . 300 quantifying in . . . . 254 quantifier (5) + g . . . . . Not 516 bound variable + g . . . . . His 514 Frege on quantification + g . . . . . Not 517 free variable + g . . . . . His 513 Aristotle on quantification + . . . . . Not 301 scope . . . . . . 351 scoping algorithm . . . . 353 truth (4) + . . . . . 431 truth definition g . . . . . 432 truth value . . . . . 372 truth function + g . . . . . 430 truth condition . . . . 362 dynamic semantics . . . . 363 lexical semantics . . . . 366 situation semantics (2) g . . . . . 402 partiality . . . . . 400 situation . . . . . . 401 scene . . . . Not 507 compositionality . . . . 364 natural logic + . . . . Par 515 quantification (4) + . . . . . Not 516 bound variable + g . . . . . His 514 Frege on quantification + g . . . . . Not 517 free variable + g . . . . . His 513 Aristotle on quantification + . . . SbC 168 lambda calculus (4) g . . . . 170 application . . . . 172 lambda operator . . . . 169 abstraction . . . . 171 conversion . . . 38 knowledge representation (20) + g . . . . 152 frame (1) . . . . 104 database + g . . . . . 105 query g . . . . 165 situation calculus . . . . 167 temporal logic (2) + g . . . . 166 temporal logic (1) g . . . . 93 concept formation . . . . . 90 concept + . . . . . . 91 individual concept . . . . 154 logical omniscience . . . . 162 rule-based representation . . . . 157 predicate logic + g . . . . 159 procedural representation . . . . 161 representation language . . . . 156 modal logic (13) + g . . . . . Ins 512 S4 . . . . . 488 modes . . . . . 486 frame (2) . . . . . . SbC 487 frame constraints . . . . . Par 210 modal operator (2) + g . . . . . . SbC 472 diamond g . . . . . . SbC 473 box g . . . . . SbC 213 doxastic logic g . . . . . Not 489 accessability relation + . . . . . Par 471 modal language (2) g . . . . . . Par 210 modal operator (2) + g . . . . . . . SbC 472 diamond g . . . . . . . SbC 473 box g . . . . . . 490 boolean operators . . . . . SbC 211 alethic logic g . . . . . SbC 212 deontic logic (3) g . . . . . . SbC 521 standard deontic logic g . . . . . . SbC 523 two-sorted deontic logic g . . . . . . SbC 522 dyadic deontic logic g . . . . . Par 215 Kripke semantics + g . . . . . . Not 489 accessability relation + . . . . . Par 457 modal model theory (7) + . . . . . . SbC 215 Kripke semantics + g . . . . . . . Not 489 accessability relation + . . . . . . Not 461 generated submodel g . . . . . . 462 model (4) + . . . . . . . SbC 464 finite model g . . . . . . . SbC 466 image finite model . . . . . . . . Res 467 Hennessy-Milner theorem g . . . . . . . Par 463 valuation g . . . . . . . SbC 465 tree model g . . . . . . Not 459 disjoint union of models g . . . . . . 455 homomorphism (2) + g . . . . . . . SbC 456 bounded homomorphism g . . . . . . . SbC 468 bounded morphism . . . . . . Not 469 expressive power g . . . . . . . Not 470 standard translation + g . . . . . . Not 460 bisimulation g . . . . . SbC 214 epistemic logic g . . . . . Not 462 model (4) + . . . . . . SbC 464 finite model g . . . . . . SbC 466 image finite model . . . . . . . Res 467 Hennessy-Milner theorem g . . . . . . Par 463 valuation g . . . . . . SbC 465 tree model g . . . . 97 context (2) . . . . . 99 context dependence . . . . . 98 context change . . . . 160 relation system . . . . 153 frame problem g . . . . 92 concept analysis . . . . . 90 concept + . . . . . . 91 individual concept . . . . 163 script . . . . 145 idea g . . . . . 90 concept + . . . . . . 91 individual concept . . . . 164 semantic network g . . . . 247 nonmonotonic logic + g . . . . . 248 default inference . . . Par 367 semantics 367 (8) g . . . . 371 truth conditional semantics . . . . 373 truth table . . . . SbC 215 Kripke semantics + g . . . . . Not 489 accessability relation + . . . . 85 functional completeness + . . . . 370 satisfaction . . . . 369 material implication g . . . . 368 assignment . . . . Not 372 truth function + g . . . Par 201 set theory (24) + g . . . . 398 set-theoretic definability . . . . Not 391 iota operator . . . . 384 determinacy . . . . 387 fuzzy relation . . . . Not 385 filter . . . . 389 generalized continuum hypothesis . . . . 386 function (3) g . . . . . 482 hypothetical reasoning + . . . . . 509 functional application . . . . . 508 functional composition . . . . Not 394 ordinal definability . . . . Not 107 consistency + . . . . 397 set algebra . . . . 399 Suslin scheme . . . . SbC 383 descriptive set theory g . . . . 388 fuzzy set g . . . . 378 borel classification g . . . . SbC 380 combinatorial set theory . . . . Not 390 independence . . . . 381 constructibility . . . . 396 relation g . . . . 377 axiom of choice g . . . . 392 large cardinal . . . . Not 395 ordinal number . . . . 393 Martin's axiom . . . . 382 continuum hypothesis g . . . . Not 379 cardinal number . . . Par 216 abstract model theory + . . . . 254 quantifier (5) + g . . . . . Not 516 bound variable + g . . . . . His 514 Frege on quantification + g . . . . . Not 517 free variable + g . . . . . His 513 Aristotle on quantification + . . . . . Not 301 scope . . . . . . 351 scoping algorithm . . . 178 compactness + . . . His 177 aristotelean logic (2) + g . . . . Par 39 syllogism g . . . . Par 513 Aristotle on quantification + . . . Par 196 foundations of theories . . . 195 constraint programming . . 424 system g . . Par 5 algebra 1 (8) g . . . 8 lattice + g . . . SbC 6 boolean algebra + . . . . SbC 7 boolean algebra with operators . . . 11 universal algebra + . . . 77 category theory + g . . . . 78 bottom . . . SbC 9 Lindenbaum algebra . . . 10 relation algebra + . . . 12 algebraic logic (10) + . . . . 6 boolean algebra + . . . . . SbC 7 boolean algebra with operators . . . . 17 post algebra . . . . 15 Lukasiewicz algebra . . . . 14 cylindric algebra g . . . . 8 lattice + g . . . . 18 quantum logic . . . . 10 relation algebra + . . . . 13 categorical logic . . . . 16 polyadic algebra . . . . 19 topos . . . Par 491 algebraic principles . . . . SbC 492 residuation . . 176 mathematical logic (12) g . . . Res 180 Lindstroem's theorem + . . . 77 category theory + g . . . . 78 bottom . . . 53 automated reasoning (25) + . . . . 35 belief revision . . . . . 76 update . . . . 67 nonmonotonic reasoning . . . . 63 mathematical induction . . . . 71 rewrite system (3) . . . . . 350 termination . . . . . 348 confluence . . . . . 349 critical pair . . . . 70 resolution (7) + . . . . . 339 purity principle . . . . . 342 simplification . . . . . 337 demodulation . . . . . 338 ordering . . . . . 340 removal of tautologies . . . . . 341 resolution refinement (4) . . . . . . 345 lock resolution . . . . . . 344 hyper resolution . . . . . . 347 theory resolution . . . . . . 346 set of support . . . . . 343 subsumption . . . . 68 paramodulation . . . . Not 72 skolemisation . . . . 65 model checking . . . . 55 clause 55 (2) . . . . . 80 horn clause g . . . . . 79 Gentzen clause . . . . 74 uncertainty . . . . 75 unification + . . . . 57 connection graph procedure . . . . 64 metatheory . . . . 61 literal . . . . 58 connection matrix . . . . 81 clause 81 . . . . . SbC 82 relative clause . . . . 69 reason extraction . . . . 59 deduction (7) + . . . . . Not 109 inconsistency . . . . . 106 consequence g . . . . . SbC 494 labelled deductive system . . . . . 111 rule-based deduction . . . . . Not 108 entailment + . . . . . 110 natural deduction (2) + g . . . . . . Not 482 hypothetical reasoning + . . . . . . Not 483 normalization . . . . . Not 107 consistency + . . . . Res 60 Herbrand's theorem . . . . 56 completion . . . . . 86 Knuth Bendix completion . . . . 73 theorem prover (3) . . . . . 427 Bliksem g . . . . . 428 Boyer-Moore theorem prover . . . . . 429 SPASS g . . . . 66 narrowing . . . . 62 logic programming g . . . . 54 answer extraction . . . . 247 nonmonotonic logic + g . . . . . 248 default inference . . . Res 182 Loewenheim-Skolem-Tarski theorem + . . . 181 logical constants . . . Not 83 completeness (2) + g . . . . SbC 84 axiomatic completeness . . . . SbC 85 functional completeness + . . . Res 179 Goedel's 1st incompleteness theorem (1931) + g . . . Not 183 operator (4) + g . . . . 254 quantifier (5) + g . . . . . Not 516 bound variable + g . . . . . His 514 Frege on quantification + g . . . . . Not 517 free variable + g . . . . . His 513 Aristotle on quantification + . . . . . Not 301 scope . . . . . . 351 scoping algorithm . . . . SbC 210 modal operator (2) + g . . . . . SbC 472 diamond g . . . . . SbC 473 box g . . . . 518 truth-funcional operator (2) g . . . . . SbC 252 iff g . . . . . SbC 253 negation . . . . Not 525 arity g . . . Not 178 compactness + . . . Res 520 Goedel's 2nd incompleteness theorem (1931) g . . . 435 type theory (2) + . . . . 433 type . . . . . 434 type shifting . . . . Not 23 polymorphism + g . . . 184 symbolic logic (18) g . . . . SbC 412 dynamic logic . . . . 420 partial logic . . . . SbC 413 fuzzy logic g . . . . 200 relevance logic + . . . . . 108 entailment + . . . . SbC 419 paraconsistent logic . . . . 416 intermediate logic . . . . 125 feature logic + . . . . . 75 unification + . . . . 157 predicate logic + g . . . . 364 natural logic + . . . . SbC 422 propositional logic g . . . . SbC 410 boolean logic g . . . . SbC 156 modal logic (13) + g . . . . . Ins 512 S4 . . . . . 488 modes . . . . . 486 frame (2) . . . . . . SbC 487 frame constraints . . . . . Par 210 modal operator (2) + g . . . . . . SbC 472 diamond g . . . . . . SbC 473 box g . . . . . SbC 213 doxastic logic g . . . . . Not 489 accessability relation + . . . . . Par 471 modal language (2) g . . . . . . Par 210 modal operator (2) + g . . . . . . . SbC 472 diamond g . . . . . . . SbC 473 box g . . . . . . 490 boolean operators . . . . . SbC 211 alethic logic g . . . . . SbC 212 deontic logic (3) g . . . . . . SbC 521 standard deontic logic g . . . . . . SbC 523 two-sorted deontic logic g . . . . . . SbC 522 dyadic deontic logic g . . . . . Par 215 Kripke semantics + g . . . . . . Not 489 accessability relation + . . . . . Par 457 modal model theory (7) + . . . . . . SbC 215 Kripke semantics + g . . . . . . . Not 489 accessability relation + . . . . . . Not 461 generated submodel g . . . . . . 462 model (4) + . . . . . . . SbC 464 finite model g . . . . . . . SbC 466 image finite model . . . . . . . . Res 467 Hennessy-Milner theorem g . . . . . . . Par 463 valuation g . . . . . . . SbC 465 tree model g . . . . . . Not 459 disjoint union of models g . . . . . . 455 homomorphism (2) + g . . . . . . . SbC 456 bounded homomorphism g . . . . . . . SbC 468 bounded morphism . . . . . . Not 469 expressive power g . . . . . . . Not 470 standard translation + g . . . . . . Not 460 bisimulation g . . . . . SbC 214 epistemic logic g . . . . . Not 462 model (4) + . . . . . . SbC 464 finite model g . . . . . . SbC 466 image finite model . . . . . . . Res 467 Hennessy-Milner theorem g . . . . . . Par 463 valuation g . . . . . . SbC 465 tree model g . . . . SbC 418 many-valued logic g . . . . SbC 417 intuitionistic logic g . . . . SbC 421 probability logic . . . . 411 conditional logic . . . . SbC 414 higher-order logic . . . . 415 inductive logic . 258 philosophy (3) g . . Par 524 philosophy of language g . . Par 259 logic 259 (2) g . . . His 177 aristotelean logic (2) + g . . . . Par 39 syllogism g . . . . Par 513 Aristotle on quantification + . . . 449 proposition (2) g . . . . 448 contradiction g . . . . . 255 paradox (2) g . . . . . . 256 liar paradox g . . . . . . 257 semantic paradox . . . . 94 conditional statement (2) . . . . . 95 antecedent . . . . . 96 counterfactual g . . Par 208 metaphysics g . . . 209 common sense world g

    6. Structured Theory And The Axiom Of Choice Matt Kaufmann April 6
    A highlevel guide will be provided to the proof in (2), which is a Model-theoretic forcing argument. However, details unsuitable for a one-hour talk will
    http://www.cs.utexas.edu/users/moore/acl2/seminar/2005.04.06-kaufmann/seminar-4-
    defun bar (x) ) (defthm foo-bar ) means that is provable from two axioms: (equal (foo x) ) (equal (bar x) and have instances that are provably unequal. If we include all local events in our notion of the current underlying theory, then that theory is inconsistent and hence the theorem foo-property is meaningless! ============================== top.lisp ============================== (in-package "ACL2") (defun foo (x) ...) (local (include-book "sub1")) (local (defthm lemma-1 ...)) ; doesn't mention bar (local (include-book "sub2")) (local (defthm lemma-2 ...)) ; doesn't mention bar (defthm foo-property (... (foo ...) ...)) ; doesn't mention bar ============================== sub1.lisp ============================== (in-package "ACL2") (local (include-book "sub-sub1")) (defthm lemma-1) ; doesn't mention bar ============================== sub-sub1.lisp ============================== (in-package "ACL2") (local (defun bar )) ... (defthm lemma-1) ; doesn't mention bar ============================== sub2.lisp ============================== (in-package "ACL2") (local (include-book "sub-sub2")) (defthm lemma-2) ; doesn't mention bar ============================== sub-sub2.lisp ============================== (in-package "ACL2") (local (defun bar , ... for a given x, the function chooses a particular

    7. IngentaConnect Formalizing Forcing Arguments In Subsystems Of Second-order Arith
    We show that certain Modeltheoretic forcing arguments involving subsystems of second-order arithmetic can be formalized in the base theory,
    http://www.ingentaconnect.com/content/els/01680072/1996/00000082/00000002/art000
    var tcdacmd="dt";

    8. First-order Model Theory (Stanford Encyclopedia Of Philosophy)
    It has several useful generalisations, for example Modeltheoretic forcing, which is an analogue of the forcing construction in set theory.
    http://plato.stanford.edu/entries/modeltheory-fo/
    Cite this entry Search the SEP Advanced Search Tools ...
    Please Read How You Can Help Keep the Encyclopedia Free
    First-order Model Theory
    First published Sat Nov 10, 2001; substantive revision Tue May 17, 2005 First-order model theory, also known as classical model theory, is a branch of mathematics that deals with the relationships between descriptions in first-order languages and the structures that satisfy these descriptions. From one point of view, this is a vibrant area of mathematical research that brings logical methods (in particular the theory of definition) to bear on deep problems of classical mathematics. From another point of view, first-order model theory is the paradigm for the rest of model theory ; it is the area in which many of the broader ideas of model theory were first worked out.
    1. First-order languages and structures
    A a ). Two exceptions are that variables are italic ( x y ) and that sequences of elements are written with lower case roman letters (a, b).

    9. Preliminary Logic Visitor List: Spring 97
    ABSTRACT We use Modeltheoretic forcing to study the properties, finitary and infinitary, of generic models obtained from smooth classes of finite
    http://www.math.uic.edu/~jbaldwin/logvis.html

    The Department of Mathematics, Statistics, and Computer Science is sponsoring a series of lectures in logic and computer science during the spring semester of 1997. The speakers will discuss topics including model theoretic algebra, descriptive complexity theory, the history of logic, and random graphs. Abstracts of the earlier talks in the series are at the end of this list.
    David Kueker (University of Maryland): April 11-18 TITLE: Forcing, Generics and Infinitary Logics I,II
    ABSTRACT: We use model-theoretic forcing to study the properties, finitary and infinitary, of generic models obtained from smooth classes of finite structures.
    April 15 -. 3:00 PM room tba
    Apr 16 - 3:00 PM room tba
    The intended visit of Angus Macintyre (Oxford University)has been postponed to the Fall. Talks during the week will be in the Science and Engineering Offices Building.
    Wilfrid Sieg (Carnegie Mellon University):
    Colloquium April 17 NOTE DATE CHANGE: TALK on THURSDAY
    Hilbert's Programs: 1917-1922
    Charles Steinhorn (Vassar College) May 12-16
    Spring 97 talks before March 12
    Chris Laskowski (University of Maryland): February 22-25; lecture on 24th

    10. 03Cxx
    68Q19; 03C15 Denumerable structures; 03C20 Ultraproducts and related constructions; 03C25 Modeltheoretic forcing; 03C30 Other model constructions
    http://www.ams.org/msc/03Cxx.html
    Home MathSciNet Journals Books ...
    Contact Us
    201 Charles Street
    Providence, RI 02904
    USA Phone: 401-455-4000
    or 800-321-4AMS Or email us at
    ams@ams.org Open Positions
    Model theory
    • 03C05 Equational classes, universal algebra [See also 03C07 Basic properties of first-order languages and structures 03C10 Quantifier elimination, model completeness and related topics 03C13 Finite structures [See also 03C15 Denumerable structures 03C20 Ultraproducts and related constructions 03C25 Model-theoretic forcing 03C30 Other model constructions 03C35 Categoricity and completeness of theories 03C40 Interpolation, preservation, definability 03C45 Classification theory, stability and related concepts 03C50 Models with special properties (saturated, rigid, etc.) 03C52 Properties of classes of models 03C55 Set-theoretic model theory 03C57 Effective and recursion-theoretic model theory [See also 03C60 Model-theoretic algebra [See also 03C62 Models of arithmetic and set theory [See also 03C64 Model theory of ordered structures; o-minimality 03C65 Models of other mathematical theories 03C68 Other classical first-order model theory 03C70 Logic on admissible sets 03C75 Other infinitary logic 03C80 Logic with extra quantifiers and operators [See also 03C85 Second- and higher-order model theory 03C90 Nonclassical models (Boolean-valued, sheaf, etc.)

    11. CiteULike: Forcing In Proof Theory
    constructive deduction forcing intuitionistic logic prooftheory classical theories in constructive ones, and constructivizing Modeltheoretic arguments.
    http://www.citeulike.org/user/greg_restall/article/125876
    Register Log in FAQ
    CiteULike
    Journals
    Groups
    • Search groups Profile Library Watchlist ... Import
      Forcing in Proof Theory
      Authors
      Online Article
      Note: You or your institution must have access rights to this article. CiteULike will not help you view an online article which you aren't authorized to view.
      Copy-and-Pasteable Citation
      The Bulletin of Symbolic Logic , Vol. 10, No. 3. (2004), pp. 305-333. Citation format: Plain APA Chicago Elsevier Harvard MLA Nature Oxford Science Turabian Vancouver
      greg_restall's tags for this article
      Other users who have posted this article
      Groups containing this article
      Everyone's tags for this article
      Abstract
      Paul Cohen's method of forcing, together with Saul Kripke's related semantics for modal and intuitionistic logic, has had profound effects on a number of branches of mathematical logic, from set theory and model theory to constructive and categorical logic. Here, I argue that forcing also has a place in traditional Hilbert-style proof theory, where the goal is to formalize portions of ordinary mathematics in restricted axiomatic theories, and study those theories in constructive or syntactic terms. I will discuss the aspects of forcing that are useful in this respect, and some sample applications. The latter include ways of obtaining conservation results for classical and intuitionistic theories, interpreting classical theories in constructive ones, and constructivizing model-theoretic arguments.

    12. General General Mathematics Mathematics For Nonmathematicians
    68Q19 Denumerable structures Ultraproducts and related constructions Modeltheoretic forcing Other model constructions Categoricity and completeness of
    http://amf.openlib.org/2001/msc2000.xsd

    13. MSC 2000 : CC = Mod
    model completeness and related topics; 03C25 Modeltheoretic forcing 03E40 Other aspects of forcing and Boolean-valued models; 03E45 Inner models,
    http://math-doc.ujf-grenoble.fr/cgi-bin/msc2000.py?L=fr&T=Q&C=msc2000&CC=Mod

    14. 03Cxx
    03C25, Modeltheoretic forcing. 03C30, Other model constructions. 03C35, Categoricity and completeness of theories. 03C40, Interpolation, preservation
    http://www.impan.gov.pl/MSC2000/03Cxx.html
    Model theory Equational classes, universal algebra
    [See also Basic properties of first-order languages and structures Quantifier elimination, model completeness and related topics Finite structures
    [See also Denumerable structures Ultraproducts and related constructions Model-theoretic forcing Other model constructions Categoricity and completeness of theories Interpolation, preservation, definability Classification theory, stability and related concepts Models with special properties (saturated, rigid, etc.) Properties of classes of models Set-theoretic model theory Effective and recursion-theoretic model theory
    [See also Model-theoretic algebra
    [See also Models of arithmetic and set theory
    [See also Model theory of ordered structures; o-minimality Models of other mathematical theories Other classical first-order model theory Logic on admissible sets Other infinitary logic Logic with extra quantifiers and operators
    [See also Second- and higher-order model theory Nonclassical models (Boolean-valued, sheaf, etc.) Abstract model theory Applications of model theory
    [See also None of the above, but in this section

    15. List KWIC DDC22 510 And MSC+ZDM E-N Lexical Connection
    Modeltheoretic algebra 03C60 Model-theoretic forcing 03C25 modeling k-epsilon 76F60 modeling simulation and numerical 81T80
    http://www.math.unipd.it/~biblio/kwic/msc-cdd/dml2_11_36.htm
    mechanics and problems of quantization # general quantum
    mechanics of deformable solids 74-XX
    mechanics of particles and systems 70-XX
    mechanics of solids # generalities, axiomatics, foundations of continuum
    mechanics type models; percolation theory # interacting random processes; statistical
    mechanics with other effects # coupling of solid
    mechanics, general relativity, laser physics) # dynamical systems in other branches of physics (quantum
    mechanics, regularization # collisions in celestial
    mechanics, structure of matter # statistical 82-XX
    mechanics; quantum logic # logical foundations of quantum
    mechanisms, robots mechanization of proofs and logical operations media and their use in instruction # audiovisual media with periodic structure # homogenization; partial differential equations in media, disordered materials (including liquid crystals and spin glasses) # random media. educational technology # educational material and media; filtration; seepage # flows in porous medical applications (general) medical epidemiology medical sciences # applications to biology and medical topics # physiological, cellular and

    16. MSC 2000 : CC = Ore
    03C25 Modeltheoretic forcing; 03C55 Set-theoretic model theory; 03C57 Effective and recursion-theoretic model theory See also 03D45
    http://portail.mathdoc.fr/cgi-bin/msc2000.py?L=fr&T=Q&C=msc2000&CC=Ore

    17. Atlas: Tarskian Algebraic Logic By Tarek Sayed Ahmed
    to other branches of logic, like modal logic, proof theory, Modeltheoretic forcing and Godel s incompleteness results. Several open problems are posed.
    http://atlas-conferences.com/cgi-bin/abstract/caqb-56
    Atlas home Conferences Abstracts about Atlas Logic in Hungary, 2005
    August 5-10, 2005
    Janos Bolyai Mathematical Society
    Budapest, Hungary Organizers
    A. Hajnal, J. Suranyi (honorary chair) H. Andreka, I. Juhasz, P. Komjath, I. Nemeti (co-chair) G. Sagi (secretary) L. Csirmaz, M. Ferenczi, M. Redei, I. Sain, L. Soukup (member) View Abstracts
    Conference Homepage
    Tarskian Algebraic Logic
    by
    Tarek Sayed Ahmed
    University of Cairo, Egypt This is a survey talk on algebraic logic. It gives a historical background leading up to a modern perspective. Central problems in algebraic logic (like the representation problem) are discussed in connection to other branches of logic, like modal logic, proof theory, model-theoretic forcing and Godel's incompleteness results. Several open problems are posed. We focus on cylindric algebras which are natural algebras of n-ary relations. Relation algebras (which are algebras of binary relation) are mostly only covered insofar as they relate to cylindric algebras. Cylindric and relation algebras were introduced by Tarski, hence the title of the talk. Date received: July 8, 2005

    18. HeiDOK
    03C25 Modeltheoretic forcing ( 0 Dok. ) 03C30 Other model constructions ( 0 Dok. ) 03C35 Categoricity and completeness of theories ( 0 Dok.
    http://archiv.ub.uni-heidelberg.de/volltextserver/msc_ebene3.php?zahl=03C&anzahl

    19. 0 Top The TOP Concept In The Hierarchy. 1 Adverbial Modification
    Moreover, domain theory enabled a model theoretic interpretation for the untyped . quantifiers 228 Modeltheoretic algebra 229 Model-theoretic forcing 23
    http://staff.science.uva.nl/~caterina/LoLaLi/soft/ch-data/gloss.txt

    20. A Model-Theoretic Approach To Ordinal Analysis (ResearchIndex)
    3 Formalizing forcing arguments in subsystems of secondorder .. (context) - Avigad - 1996 2 The Model-theoretic ordinal analysis of theories of predicat.
    http://citeseer.comp.nus.edu.sg/375976.html
    A Model-Theoretic Approach to Ordinal Analysis (1997) (Make Corrections)
    Jeremy Avigad, Richard Sommer
    @ NUS Home/Search Context Related
    View or download:
    ucla.edu/pub/asl/bsl/0301
    0301002.ps
    Cached: PS.gz PS PDF Image ... Help
    From: ucla.edu (more)
    (Enter author homepages)

    Rate this article: (best)
    Comment on this article
    (Enter summary)
    Abstract: . We describe a model-theoretic approach to ordinal analysis via the finite combinatorial notion of an #-large set of natural numbers. In contrast to syntactic approaches that use cut elimination, this approach involves constructing finite sets of numbers with combinatorial properties that, in nonstandard instances, give rise to models of the theory being analyzed. This method is applied to obtain ordinal analyses of a number of interesting subsystems of first- and second-order ... (Update) Similar documents (at the sentence level): A Model-Theoretic Approach to Ordinal Analysis - Avigad, Sommer (1997) (Correct) Active bibliography (related documents): More All On models constructed by means of the Arithmetized.. - Kaye, Kotlarski (Correct) ... (Correct) Similar documents based on text: More All "Clarifying the Nature of the Infinite": the development of.. - Avigad, Reck (2001)

    21. Sachgebiete Der AMS-Klassifikation: 00-09
    related constructions 03C25 Modeltheoretic forcing 03C30 Other model constructions 03C35 Categoricity and completeness of theories 03C40 Interpolation,
    http://www.math.fu-berlin.de/litrech/Class/ams-00-09.html
    Sachgebiete der AMS-Klassifikation: 00-09
    nach 90-99 Weiter nach 10-19 Suche in allen Klassifikationen
    01-XX 03-XX 04-XX 05-XX 06-XX 08-XX
    nach 90-99 Weiter nach 10-19 Suche in allen Klassifikationen

    22. Suchenek | Curriculum Vitae
    Two applications of Modeltheoretic forcing to Lipski s model of data base with incomplete information Fundamenta Informaticae 12 (1989) pp 269288.
    http://csc.csudh.edu/suchenek/curriculum-vitae.html
    Marek A. Suchenek, Ph.D.
    Marek A. Suchenek, Ph.D.
    Professor
    Department of Computer Science

    California State University Dominguez Hills

    Carson, CA 90747
    Tel. (310) 243-2068
    suchenek@csudh.edu
    Residence :
    830 N. Juanita Ave. #4
    Redondo Beach , CA 90277
    Tel. (310) 798-0253
    RESUME
    Education Academic Experience Service Honors ... General Interest

    1. Education (post-secondary)
    Institution
    Degree Awarded
    Warsaw University of Technology
    Ph.D. Study "Data Processing Systems"
    Ph.D. in Technical Sciences, with distinction. (A title conferred in lieu of Ph.D. in Computer Science according to pre-1986 Polish legislation
    Warsaw University of Technology
    College of Fundamental Problems of Technology
    M.Sc. in Mathematical Engineering
    (The coursework included: mathematics, electronics, computer engineering, and Computer Science.)

    2. Academic Experience (1979 - present)
    Years
    Institution
    Full Time Position / Courses taught
    1990 - present
    California State University Dominguez Hills
    Department of Computer Science
    Professor (tenured 1994) /
    Analysis of Algorithms

    23. 03Cxx
    03C25 Modeltheoretic forcing; 03C30 Other model constructions; 03C35 Categoricity and completeness of theories; 03C40 Interpolation, preservation,
    http://www.ma.hw.ac.uk/~chris/MR/03Cxx.html
    03Cxx Model theory
    • 03C07 Basic properties of first-order languages and structures
    • 03C10 Quantifier elimination and related topics
    • 03C13 Finite structures
    • 03C15 Denumerable structures
    • 03C20 Ultraproducts and related constructions
    • 03C25 Model-theoretic forcing
    • 03C30 Other model constructions
    • 03C35 Categoricity and completeness of theories
    • 03C40 Interpolation, preservation, definability
    • 03C45 Stability and related concepts
    • 03C50 Models with special properties (saturated, rigid, etc.)
    • 03C52 Properties of classes of models
    • 03C55 Set-theoretic model theory
    • 03C65 Models of other mathematical theories
    • 03C68 Other classical first-order model theory
    • 03C70 Logic on admissible sets
    • 03C75 Other infinitary logic
    • 03C85 Second- and higher-order model theory
    • 03C90 Nonclassical models (Boolean-valued, sheaf, etc.)
    • 03C95 Abstract model theory
    • 03C99 None of the above but in this section
    Top level of Index
    Top level of this Section

    24. PlanetMath:
    03C25, , Model-theoretic forcing. 03C30, -, Other model constructions. 03C35, -, Categoricity and completeness of theories
    http://planetmath.org/browse/categories/03Cxx/
    (more info) Math for the people, by the people. Encyclopedia Requests Forums Docs ... RSS Login create new user name: pass: forget your password? Main Menu sections Encyclop¦dia
    Papers

    Books

    Expositions

    meta Requests
    Orphanage

    Unclass'd

    Unproven
    ...
    Classification

    talkback Polls
    Forums
    Feedback Bug Reports downloads Snapshots PM Book information News Docs Wiki ChangeLog ... About Browsing MSC leaves only (Case insensitive substrings, use '-' to exclude) 03Cxx - Model theory Equational classes, universal algebra Basic properties of first-order languages and structures Quantifier elimination, model completeness and related topics Finite structures Denumerable structures Ultraproducts and related constructions Model-theoretic forcing Other model constructions Categoricity and completeness of theories Interpolation, preservation, definability Classification theory, stability and related concepts Models with special properties (saturated, rigid, etc.) Properties of classes of models Set-theoretic model theory Effective and recursion-theoretic model theory Model-theoretic algebra Models of arithmetic and set theory Model theory of ordered structures; o-minimality

    25. MSC2000: Parent = (03Cxx)
    03C25 Modeltheoretic forcing; 03C30 Other model constructions; 03C35 Categoricity and 03C60 Model-theoretic algebra See also 08C10, 12Lxx, 13L05
    http://jfm.sub.uni-goettingen.de/cgi-bin/jfmscen?form=/JFM/de/quick.html&zb=/cgi

    26. Browse MSC2000
    Modeltheoretic forcing, related Model-theoretic algebra See also 08C10, 11U09, 12L12, 13L05, 16B70, 20A15, related
    http://www.zblmath.fiz-karlsruhe.de/MATH/msc/zbl/msc/2000/03-XX/03Cxx/dir
    Contact Search Browse Instructions ... Main Changes 75th anniversary Zentralblatt MATH Home Facts and Figures Partners and Projects Subscription
    Service Database Gateway Database Mirrors Reviewer Service Classification ... Serials and Journals database
    Miscellanea Links to the Mathematical World
    Display Text version Printer friendly page Internal Browse MSC2000 - by section and classification
    TOP
    MSC2000 - Mathematics Subject Classification Scheme 03-XX Mathematical logic and foundations Model theory Classification Topic X-ref Equational classes, universal algebra
    [See also related... Basic properties of first-order languages and structures
    related...
    Quantifier elimination, model completeness and related topics
    related...
    Finite structures
    [See also related... Denumerable structures
    related...
    Ultraproducts and related constructions
    related...
    Model-theoretic forcing related... Other model constructions related...

    27. Past Colloquium And Seminar Speakers
    Dec. 11. Logic Seminar. Amir Togha (GWU), Modeltheoretic forcing. Dec. 18. Logic Seminar. Rumen Dimitrov (GWU), forcing and omitting types theorem.
    http://www.gwu.edu/~math/colloquiahistory.html
    Past Colloquium and Seminar Speakers
    Years: Department Colloquia and Seminars, Fall 1990
    Joseph Bonin, Colloquium Organizer
    Friday, September 14. Mathematics Colloquium. Edward R. Scheinerman, Johns Hopkins University and George Washington University. Title: Circle Orders.
    Friday, September 14. Combinatorics Seminar. Edward R. Scheinerman, Johns Hopkins University and George Washington University. Title: More on Circle Orders: Failure of Compactness. Monday, September 17. Recursion Theory Seminar. William Gasarch, University of Maryland, College Park. Title: When Oracles Do Not Help. Friday, September 21. Mathematics Colloquium. Marc Lipman, Office of Naval Research. Title: Vertex-Transitive Graphs of Toughness Exactly One are Bipartite. Friday, September 21. Combinatorics Seminar. Rodica Simion, George Washington University. Title: Set Partition Statistics Applied to Permutations. Monday, September 24. Recursion Theory Seminar. William Gasarch, University of Maryland, College Park. Title: Friedberg-Munchuik Theorem for Inductive Inference. Friday, September 28. Recursion Theory Seminar. Chris Laskowski, University of Maryland, College Park. Title: Selected Topics in Model Theory, I

    28. Zentralblatt MATH - MSC 2000 - Search And Browse
    03C25 Modeltheoretic forcing ZMATH. 03C30 Other model constructions ZMATH. 03C35 Categoricity and completeness of theories ZMATH
    http://www.zentralblatt-math.org/msc/search/?pa=03Cxx

    29. Princeton University Senior Theses Brief Display
    Rottman, Jeffery (1976) Modeltheoretic forcing in L(t(o)). Rouch, Timothy E. (1970) On some characterizations of conditional expectation.
    http://libweb5.princeton.edu/theses/thesesvw.asp?Lname=&Fname=&Submit=Search&Tit

    30. 00-01 Textbooks (general Mathematics) 00-02 Research Monographs
    and related constructions 03C25 Modeltheoretic forcing 03C30 Other model 03C57 Recursion-theoretic model theory 03C60 Model-theoretic algebra 03C62
    http://www.mathematik.tu-chemnitz.de/metadata/mscliste.txt
    00-01 Textbooks (general mathematics) 00-02 Research monographs (general mathematics) 00-99 General mathematics 00-XX General mathematics 00A05 General mathematics 00A06 Mathematics for non-mathematicians 00A07 Problem books 00A08 Mathematical recreation 00A15 Bibliographies 00A20 Dictionaries and other general reference works 00A22 Formularies 00A30 Philosophy of mathematics 00A35 Methodology of mathematics, didactics 00A69 General applied mathematics 00A71 Theory of mathematical modeling 00A72 General methods of simulation 00A73 Dimensional analysis 00A79 Physics 00A99 Miscellaneous topics in general mathematics 00Axx Topics in general mathematics 00B05 Collections of abstracts of lectures 00B10 Collections of articles of general interest 00B15 Collections of articles of miscellaneous specific interest 00B20 Proceedings of conferences of general interest 00B25 Proceedings of conferences of miscellaneous specific interest 00B30 Festschriften 00B50 Volumes of selected translations 00B55 Miscellaneous volumes of translations 00B60 Collections of reprinted articles 00Bxx Conference proceedings and collections of papers 01-00 Reference works (history) 01-01 Textbooks (history) 01-02 Research monographs (history) 01-06 Proceedings of conferences, etc. (history) 01-99 History of mathematics and biography 01-XX History and biography 01A05 General histories, source books 01A07 Ethnomathematics 01A10 Paleolithic or Neolithic mathematics, etc. 01A12 Native American mathematics 01A13 Native African mathematics 01A15 Pre-Greek mathematics of Europe 01A16 Egyptian mathematics 01A17 Babylonian mathematics 01A20 Greek or Roman mathematics 01A25 Chinese mathematics 01A27 Japanese mathematics 01A29 Southeast Asian mathematics 01A30 Mathematics of Islam (Medieval) 01A32 Indian mathematics 01A35 Mathematics in the medieval 01A40 Mathematics in the 15th and 16th centuries, Renaissance 01A45 Mathematics in the 17th century 01A50 Mathematics in the 18th century 01A55 Mathematics in the 19th century 01A60 Mathematics in the 20th century 01A65 Development of contemporary mathematics 01A67 Future prospectives in mathematics 01A70 Biographies, obituaries, personalia, bibliographies 01A72 Schools of mathematics 01A73 History of mathematics at universities 01A74 History of mathematics at institutions and academies (nonuniversity) 01A75 Collected or selected works 01A80 Sociology (and profession) of mathematics 01A99 Miscellaneous topics in history of mathematics 03-00 Reference works (mathematical logic) 03-01 Textbooks (mathematical logic) 03-02 Research monographs (mathematical logic) 03-03 Historical (mathematical logic) 03-04 Machine computation, programs (mathematical logic) 03-06 Proceedings of conferences (mathematical logic) 03-99 Mathematical logic and foundations 03-XX Mathematical logic 03A05 Philosophical and critical 03B05 Classical propositional logic 03B10 First-order logic 03B15 Higher-order logic 03B20 Subsystems of classical logic 03B22 Abstract deductive systems 03B25 Decidability of theories and sets of sentences 03B30 Foundations of classical theories 03B35 Mechanical theorem proving 03B40 Combinatory logic 03B45 Modal logic, etc. 03B46 Relevance logic, etc. 03B48 Probability logic, etc. 03B50 Many-valued logic 03B52 Fuzzy logic 03B53 Paraconsistent logic 03B55 Intermediate logics 03B60 Other nonclassical logic 03B65 Logic of natural languages 03B70 Logic of programming 03B80 Appl. of logic 03B99 General logic 03Bxx General logic 03C05 Universal algebra (model theory) 03C07 Basic properties of first-order languages and structures 03C10 Quantifier elimination and related topics 03C13 Finite models 03C15 Countable models 03C20 Ultraproducts and related constructions 03C25 Model-theoretic forcing 03C30 Other model constructions 03C35 Categoricity, etc. 03C40 Interpolation, etc. (model theory) 03C45 Stability (model theory) 03C50 Models with special properties 03C52 Properties of classes of models 03C55 Set-theoretic model theory 03C57 Recursion-theoretic model theory 03C60 Model-theoretic algebra 03C62 Models of arithmetic and set theory 03C65 Models of other mathematical theories 03C68 Other classical first-order model theory 03C70 Logic on admissible sets 03C75 Other infinitary logic 03C80 Logic with extra quantifiers and operators 03C85 Higher-order model theory 03C90 Nonclassical models 03C95 Abstract model theory 03C99 Model theory (logic) 03Cxx Model theory (logic) 03D03 Rewriting systems 03D05 Automata theory in connection with logical questions 03D10 Turing machines and related notions 03D15 Complexity of computation 03D20 Recursive functions 03D25 Recursively enumerable sets 03D30 Degrees, other than r.e. 03D35 Undecidability 03D40 Word problems, etc. (logic) 03D45 Effectively presented structures, etc. 03D50 Recursive equivalence types 03D55 Hierarchies 03D60 Recursion theory on ordinals, admissible sets, etc. 03D65 Other generalized recursion theory 03D70 Inductive definability 03D75 Abstract and axiomatic recursion theory 03D80 Appl. of recursion theory 03D99 Recursion theory 03Dxx Recursion theory 03E05 Combinatorial set theory (logic) 03E10 Ordinal and cardinal arithmetic 03E15 Descriptive set theory (logic) 03E20 Other classical set theory (logic) 03E25 Axiom of choice and related propositions (logic) 03E30 Axiomatics of classical set theory and its fragments 03E35 Consistency and independence results (set theory) 03E40 Other aspects of forcing (set theory) 03E45 Constructibility, ordinal definability, and related notions 03E47 Other notions of set-theoretic definability 03E50 Continuum hypothesis and generalizations (logic) 03E55 Large cardinals 03E60 Axiom of determinacy, etc. 03E65 Other hypotheses and axioms (set theory) 03E70 Nonclassical set theories 03E72 Fuzzy sets (logic) 03E75 Appl. of set theory 03E99 Set theory (logic) 03Exx Set theory (logic) 03F03 General aspects of proof theory 03F05 Cut-elimination, etc. 03F07 Structure of proofs 03F10 Functionals in proof theory 03F15 Recursive ordinals and ordinal notations 03F20 Complexity of proofs 03F25 Relative consistency and interpretations 03F30 First-order arithmetic and fragments 03F35 Higher-order arithmetic and fragments 03F40 Goedel numberings in proof theory 03F50 Metamathematics of constructive systems 03F55 Intuitionistic mathematics 03F60 Constructive and recursive analysis 03F65 Other constructive mathematics 03F99 Metamathematics, etc. 03Fxx Metamathematics, etc. 03G05 Boolean algebras in algebraic logic 03G10 Lattices and related structures (algebraic logic) 03G12 Quantum logic 03G15 Cylindric and polyadic algebras, etc. 03G20 Post and Lukasiewicz algebras (algebraic logic) 03G25 Other algebras related to logic 03G30 Categorical logic 03G99 Algebraic logic 03Gxx Algebraic logic 03H05 Nonstandard models in mathematics 03H10 Appl. of nonstandard models to other sciences 03H15 Nonstandard models of arithmetic 03H99 Nonstandard models 03Hxx Nonstandard models 04-00 Reference works (set theory) 04-01 Textbooks (set theory) 04-02 Research monographs (set theory) 04-03 Historical (set theory) 04-04 Machine computation, programs (set theory) 04-06 Proceedings of conferences (set theory) 04-99 Set theory 04-XX Set theory 04A03 Set algebra 04A05 Relations, functions 04A10 Ordinal and cardinal numbers; generalizations 04A15 Descriptive set theory 04A20 Combinatorial set theory 04A25 Axiom of choice and equivalent propositions 04A30 Continuum hypothesis and generalizations 04A72 Fuzzy sets 04A99 Miscellaneous topics in set theory 05-01 Textbooks (combinatorics) 05-02 Research monographs (combinatorics) 05-03 Historical (combinatorics) 05-04 Machine computation, programs (combinatorics) 05-06 Proceedings of conferences (combinatorics) 05-99 Combinatorics 05-XX Combinatorics 05A05 Combinatorial choice problems 05A10 Combinatorial functions 05A15 Combinatorial enumeration problems 05A16 Asymptotic enumeration 05A17 Partitions of integres (combinatorics) 05A18 Partitions of sets 05A19 Combinatorial identities 05A20 Combinatorial inequalities 05A30 q-calculus and related topics 05A40 Umbral calculus 05A99 Classical combinatorial problems 05Axx Classical combinatorial problems 05B05 Block designs (combinatorics) 05B07 Triple systems 05B10 Difference sets 05B15 Orthogonal arrays, etc. 05B20 (0,1)-matrices (combinatorics) 05B25 Finite geometries (combinatorics) 05B30 Other designs, configurations 05B35 Matroids (combinatorics) 05B40 Packing and covering (combinatorics) 05B45 Tessellation and tiling problems 05B50 Polyominoes 05B99 Designs and configurations 05Bxx Designs and configurations 05C05 Trees 05C10 Topological graph theory 05C12 Distance in graphs 05C15 Chromatic theory of graphs and maps 05C20 Directed graphs (digraphs) 05C25 Graphs and groups 05C30 Enumeration of graphs and maps 05C35 Extremal problems (graph theory) 05C38 Paths and cycles 05C40 Connectivity 05C45 Eulerian and Hamiltonian graphs 05C50 Graphs and matrices 05C55 Generalized Ramsey theory 05C60 Isomorphism problems (graph theory) 05C65 Hypergraphs 05C70 Factorization, etc. 05C75 Structural characterization of types of graphs 05C78 Graph labelling 05C80 Random graphs 05C85 Graph algorithms 05C90 Appl. of graph theory 05C99 Graph theory 05Cxx Graph theory 05D05 Extremal set theory 05D10 Ramsey theory 05D15 Transversal (matching) theory 05D99 Extremal combinatorics 05Dxx Extremal combinatorics 05E05 Symmetric functions 05E10 Tableaux, etc. 05E15 Combinatorial problems concerning the classical groups 05E20 Group actions on designs, etc. 05E25 Group actions on posets, etc. 05E30 Association schemes, etc. 05E35 Orthogonal polynomials (combinatorics) 05E99 Algebraic combinatorics 05Exx Algebraic combinatorics 06-00 Reference works (ordered structures) 06-01 Textbooks (ordered structures) 06-02 Research monographs (ordered structures) 06-03 Historical (ordered structures) 06-04 Machine computation, programs (ordered structures) 06-06 Proceedings of conferences (ordered structures) 06-99 Order, lattices, ordered algebraic structures 06-XX Ordered structures 06A05 Total order 06A06 Partial order 06A07 Combinatorics of partially ordered sets 06A08 Shellable posets, etc. 06A09 Cohomology of posets 06A12 Semilattices 06A15 Galois correspondences (ordered structures) 06A23 Completions of lattices 06A99 Ordered sets 06Axx Ordered sets 06B05 Structure theory of lattices 06B10 Ideals, etc. (lattices) 06B15 Representation theory of lattices 06B20 Varieties of lattices 06B25 Free lattices, etc. 06B30 Topological lattices 06B35 Continuous lattices 06B99 Lattices 06Bxx Lattices 06C05 Modular lattices 06C10 Geometric lattices 06C15 Complemented lattices 06C20 Complemented modular lattices, etc. 06C99 Lattices (modular and complemented) 06Cxx Lattices (modular and complemented) 06D05 Structure and representation theory of distributive lattices 06D10 Complete distributivity of lattices 06D15 Pseudocomplemented lattices 06D20 Heyting algebras 06D25 Post algebras 06D30 De Morgan algebras and generalizations 06D99 Distributive lattices 06Dxx Distributive lattices 06E05 Structure theory of Boolean algebras 06E10 Complete Boolean algebras 06E15 Stone space and related constructions 06E20 Ring theoretic properties (Boolean algebras) 06E25 Boolean algebras with additional operations 06E30 Boolean functions 06E99 Boolean algebras 06Exx Boolean algebras 06F05 Ordered semigroups 06F10 Noether lattices 06F15 Ordered groups 06F20 Ordered abelian groups, etc. 06F25 Ordered algebraic structures 06F30 Order topologies (order-theoretic aspects) 06F35 BCK-algebras, etc. 06F99 Ordered structures (connections with other sections) 06Fxx Ordered structures (connections with other sections) 08-00 Reference works (general algebraic systems) 08-01 Textbooks (general algebraic systems) 08-02 Research monographs (general algebraic systems) 08-03 Historical (general algebraic systems) 08-04 Machine computation, programs (general algebraic systems) 08-06 Proceedings of conferences (general algebraic systems) 08-99 General algebraic systems 08-XX General algebraic systems 08A02 General relational systems 08A05 Structure theory of general algebraic systems 08A30 Subalgebras of general algebraic systems 08A35 Endomorphisms on general algebraic systems 08A40 Operations on general algebraic systems 08A45 Equational compactness 08A50 Word problems (universal algebra) 08A55 Partial algebras 08A60 Unary algebras 08A62 Finitary algebras 08A65 Infinitary algebras 08A70 Appl. of universal algebra in computer science 08A99 Universal algebra 08Axx Universal algebra 08B05 Equational logic in varieties of algebras 08B10 Congruence modularity and generalizations in varieties of algebras 08B15 Lattices of varieties of algebras 08B20 Free algebras in varieties of algebras 08B25 Limits in varieties of algebras 08B26 Subdirect products in varieties of algebras 08B30 Injectives or projectives in varieties of algebras 08B99 Varieties of algebras 08Bxx Varieties of algebras 08C05 Categories of algebras 08C10 Axiomatic model classes 08C15 Quasivarieties 08C99 Classes of algebras 08Cxx Other classes of algebras 11-00 Reference works (number theory) 11-01 Textbooks (number theory) 11-02 Research monographs (number theory) 11-03 Historical (number theory) 11-04 Machine computation, programs (number theory) 11-06 Proceedings of conferences (number theory) 11-99 Number theory 11-XX Number theory 11A05 Multiplicative structure of the integers 11A07 Congruences, etc. 11A15 Power residues, etc. 11A25 Arithmetic functions, etc. 11A41 Elemementary prime number theory 11A51 Factorization of numbers 11A55 Continued fractions (number-theoretic results) 11A63 Radix representation 11A67 Representation systems for integers and rationals 11A99 Elementary number theory 11Axx Elementary number theory 11B05 Topology etc. of sets of numbers 11B13 Additive bases 11B25 Arithmetic progressions 11B34 Representation functions 11B37 Recurrences 11B39 Special numbers, etc. 11B50 Sequences (mod m) 11B57 Farey sequences; the sequences 11B65 Binomial coefficients, etc. 11B68 Bernoulli numbers, etc. 11B73 Bell and Stirling numbers 11B75 Combinatorial number theory 11B83 Special sequences of integers and polynomials 11B85 Automata sequences 11B99 Sequences and sets 11Bxx Sequences and sets of numbers 11C08 Polynomials 11C20 Matrices, determinants 11C99 Polynomials and matrices 11Cxx Polynomials and matrices 11D04 Linear diophantine equations 11D09 Quadratic and bilinear diophantine equations 11D25 Cubic and quartic diophantine equations 11D41 Higher degree diophantine equations 11D57 Multiplicative and norm form diophantine equations 11D61 Exponential diophantine equations 11D68 Rational numbers as sums of fractions 11D72 Equations in many variables 11D75 Diophantine inequalities 11D79 Congruences in many variables 11D85 Representation problems of integers 11D88 p-adic and power series fields 11D99 Diophantine equations 11Dxx Diophantine equations 11E04 Quadratic forms over general fields 11E08 Quadratic forms over local rings and fields 11E10 Forms over real fields 11E12 Quadratic forms over global rings and fields 11E16 General binary quadratic forms 11E20 General ternary and quaternary quadratic forms 11E25 Sums of squares, etc 11E39 Bilinear and Hermitian forms 11E41 Class numbers of quadratic and Hermitian forms 11E45 Analytic theory of forms 11E57 Arithmetic properties of classical groups 11E70 K-theory of quadratic and Hermitian forms 11E72 Galois cohomology of linear algebraic groups 11E76 Forms of degree higher than two 11E81 Algebraic theory of quadratic forms 11E88 Quadratic spaces; Clifford algebras 11E95 p-adic theory of forms 11E99 Forms and linear algebraic groups 11Exx Forms and linear algebraic groups 11F03 Modular and automorphic functions 11F06 Structure of modular groups and generalizations 11F11 Modular forms, one variable 11F12 Automorphic forms, one variable 11F20 Dedekind eta function, Dedekind sums 11F22 Relationship of automorphic forms to Lie algebras, etc. 11F25 Hecke-Petersson operators, differential operators (one variable) 11F27 Theta series; Weil representation 11F30 Fourier coefficients of automorphic forms 11F32 Modular correspondences, etc. 11F33 Congruences for (p-adic) modular forms 11F37 Forms of half-integer weight, etc. 11F41 Hilbert modular forms and surfaces 11F46 Siegel modular groups and their modular and automorphic forms 11F55 Groups and their modular and automorphic forms (several variables) 11F60 Differential operators, etc. (several variables) 11F66 Dirichlet series and functional equations related to modular forms 11F67 Special values of automorphic L-series, etc 11F70 Representation-theoretic methods in automorphic theory 11F72 Spectral theory 11F75 Cohomology of arithmetic groups 11F80 Galois properties 11F85 p-adic theory, local fields 11F99 Discontinuous groups and automorphic forms 11Fxx Discontinuous groups and automorphic forms 11G05 Elliptic curves over global fields 11G07 Elliptic curves over local fields 11G09 Drinfel'd modules, etc. 11G10 Abelian varieties of dimension >1 11G15 Complex multiplication and moduli of abelian varieties 11G16 Elliptic and modular units 11G18 Arithmetic aspects of modular and Shimura varieties 11G20 Curves over finite and local fields 11G25 Varieties over finite and local fields 11G30 Curves of arbitrary genus 11G35 Varieties over global fields 11G40 L-functions of varieties over global fields 11G45 Geometric class field theory 11G99 Arithmetic algebraic geometry 11Gxx Arithmetic algebraic geometry (Diophantine geometry) 11H06 Lattices and convex bodies (number theoretic results) 11H16 Nonconvex bodies 11H31 Lattice packing and covering (number-theoretic results) 11H46 Products of linear forms 11H50 Minima of forms 11H55 Quadratic forms 11H56 Automorphism groups of lattices 11H60 Mean value and transfer theorems 11H99 Geometry of numbers 11Hxx Geometry of numbers 11J04 Homogeneous approximation to one number 11J06 Markov and Lagrange spectra and generalizations 11J13 Simultaneous homogeneous approximation, linear forms 11J17 Approximation by numbers from a fixed field 11J20 Inhomogeneous linear forms 11J25 Diophantine inequalities 11J54 Small fractional parts of polynomials and generalizations 11J61 Approximation in non-Archimedean valuations 11J68 Approximation to algebraic numbers 11J70 Continued fractions and generalizations 11J71 Distribution modulo one 11J72 Irrationality 11J81 Transcendence (general theory) 11J82 Measures of irrationality and of transcendence 11J83 Metric theory 11J85 Algebraic independence results 11J86 Linear forms in logarithms; Baker's method 11J89 Transcendence theory of elliptic and abelian functions 11J91 Transcendence theory of other special functions 11J99 Diophantine approximation 11Jxx Diophantine approximation 11K06 General theory of distribution modulo 1 11K16 Normal numbers, etc. 11K31 Special sequences 11K36 Well-distributed sequences and other variations 11K38 Irregularities of distribution 11K41 Continuous, p-adic and abstract analogues 11K45 Pseudo-random numbers, etc. 11K50 Metric theory of continued fractions 11K55 Metric theory of other number-theoretic algorithms and expansions 11K60 Diophantine approximation (probabilistic number theory) 11K65 Arithmetic functions (probabilistic number theory) 11K70 Harmonic analysis and almost periodicity 11K99 Probabilistic theory 11Kxx Probabilistic number theory 11L03 Trigonometric and exponential sums, general 11L05 Gauss and Kloosterman sums 11L07 Estimates on exponential sums 11L10 Complete character sums 11L15 Weyl sums 11L20 Sums over primes 11L26 Sums over arbitrary intervals 11L40 Estimates on character sums 11L99 Exponential sums and character sums 11Lxx Exponential sums and character sums 11M06 Riemannian zeta-function and Dirichlet L-function 11M20 Real zeros of L(s,chi) 11M26 Nonreal zeros of zeta(s) and L(s,chi) 11M35 Other zeta functions 11M36 Selberg zeta functions and regularized determinants 11M41 Other Dirichlet series and zeta functions 11M45 Tauberian theorems 11M99 Analytic theory of zeta and L-functions 11Mxx Analytic theory of zeta and L-functions 11N05 Distribution of primes 11N13 Primes in progressions 11N25 Distribution of integers with specified multiplicative constraints 11N30 Turan theory 11N32 Primes represented by polynomials 11N35 Sieves 11N36 Appl. of sieve methods 11N37 Asymptotic results on arithmetic functions 11N45 Asymptotic results on counting functions for other structures 11N56 Rate of growth of arithmetic functions 11N60 Distribution functions (additive and positive multipl. functions) 11N64 Characterization of arithmetic functions 11N69 Distribution of integers in special residue classes 11N75 Appl. of automorphic theory to multiplicative problems 11N80 Generalized primes and integers 11N99 Multiplicative number theory 11Nxx Multiplicative number theory 11P05 Waring's problem and variants 11P21 Lattice points in specified regions 11P32 Additive questions involving primes 11P55 Appl. of the Hardy-Littlewood method 11P81 Elementary theory of partitions 11P82 Analytic theory of partitions 11P83 Partitions: congruences and congruential restrictions 11P99 Additive number theory 11Pxx Additive number theory 11R04 Algebraic numbers 11R06 Special algebraic numbers 11R09 Polynomials over global fields 11R11 Quadratic extensions 11R16 Cubic and quartic extensions 11R18 Cyclotomic extensions 11R20 Other abelian and metabelian extensions 11R21 Other number fields 11R23 Iwasawa theory 11R27 Units and factorization 11R29 Class numbers, class groups, discriminants 11R32 Galois theory for global fields 11R33 Integral representations related to algebraic numbers 11R34 Galois cohomology for global fields 11R37 Class field theory for global fields 11R39 Langlands-Weil conjectures, nonabelian class field theory 11R42 Zeta functions and L-functions of global number fields 11R44 Distribution of prime ideals 11R45 Density theorems 11R47 Other analytic theory 11R52 Quaternion and other division algebras: arithmetic, zeta functions 11R54 Other algebras and orders, and their zeta and L-functions 11R56 Adele rings and groups 11R58 Arithmetic theory of algebraic function fields 11R65 Class groups and Picard groups of orders 11R70 K-theory of global fields 11R80 Totally real fields, etc. 11R99 Algebraic number theory over global fields 11Rxx Algebraic number theory: global fields 11S05 Polynomials over local fields 11S15 Ramification and extension theory 11S20 Galois theory for local fields 11S23 Integral representations for local fields 11S25 Galois cohomology for local fields 11S31 Class field theory for local fields 11S37 Langlands-Weil conjectures, nonabelian class field theory 11S40 Zeta functions and L-functions of local number fields 11S45 Algebras and orders, and their zeta functions 11S70 K-theory of local fields 11S80 Other analytic theory of local fields 11S85 Other nonanalytic theory of local fields 11S99 Algebraic number theory over local and p-adic fields 11Sxx Algebraic number theory: local and p-adic fields 11T06 Polynomials over finite fields or rings 11T22 Cyclotomy 11T23 Exponential sums 11T24 Other character sums and Gauss sums 11T30 Structure theory of finite fields 11T55 Arithmetic theory of polynomial rings over finite fields 11T71 Algebraic coding theory 11T99 Finite fields and commutative rings (number-theoretic aspects) 11Txx Finite fields and finite commutative rings (number-theoretic) 11U05 Decidability related to number theory 11U07 Ultraproducts in number theory 11U09 Connections of number theory with model theory 11U10 Nonstandard arithmetic in number theory 11U99 Connections of number theory with logic 11Uxx Connections of number theory with logic 11Y05 Factorization 11Y11 Primality 11Y16 Algorithms 11Y35 Analytic computations 11Y40 Algebraic number theory computations 11Y50 Computer solution of Diophantine equations 11Y55 Calculation of integer sequences 11Y60 Evaluation of constants 11Y65 Continued fraction calculations 11Y70 Values of arithmetic functions 11Y99 Computational number theory 11Yxx Computational number theory 11Z05 Miscellaneous appl. of number theory 12-00 Reference works (field theory) 12-01 Textbooks (field theory) 12-02 Research monographs (field theory) 12-03 Historical (field theory) 12-04 Machine computation, programs (field theory) 12-06 Proceedings of conferences (field theory) 12-99 Field theory and polynomials 12-XX Field theory and polynomials 12D05 Factorization of real or complex polynomials 12D10 Algebraic theorems of location of zeros of polynomials over R or C 12D15 Formally real fields 12D99 Real and complex fields 12Dxx Real and complex fields 12E05 Polynomials over general fields 12E10 Special polynomials over general fields 12E12 Algebraic equations 12E15 Skew fields over special fields 12E20 Finite fields (field-theoretic aspects) 12E25 Hilbertian fields; Hilbert's irreducibility theorem 12E99 General field theory 12Exx General field theory 12F05 Algebraic extensions 12F10 Galois theory 12F12 Inverse Galois theory 12F15 Inseparable extensions 12F20 Transcendental extensions 12F99 Field extensions 12Fxx Field extensions 12G05 Galois cohomology 12G10 Cohomological dimension 12G99 Homological methods in field theory 12Gxx Homological methods in field theory 12H05 Differential algebra 12H10 Difference algebra 12H20 Abstract differential equations 12H25 p-adic differential equations 12H99 Differential algebra 12Hxx Differential algebra, etc. 12J05 Normed fields 12J10 Valued fields 12J12 Formally p-adic fields 12J15 Ordered fields 12J17 Topological semi-fields 12J20 General valuation theory 12J25 Non-Archimedean valued fields 12J27 Krasner-Tate algebras 12J99 Topological fields 12Jxx Topological fields 12K05 Near-fields 12K10 Semi-fields 12K99 Generalizations of fields 12Kxx Generalizations of fields 12L05 Decidability related to field theory 12L10 Ultraproducts in field theory 12L12 Model theory for fields 12L15 Nonstandard arithmetic for fields 12L99 Connections of field theory with logic 12Lxx Connections of field theory with logic 12Y05 Computational aspects of field theory and polynomials 13-00 Reference works (commutative rings and algebras) 13-01 Textbooks (commutative rings and algebras) 13-02 Research monographs (commutative rings and algebras) 13-03 Historical (commutative rings and algebras) 13-04 Machine computation, programs (commutative rings and algebras) 13-06 Proceedings of conferences (commutative rings and algebras) 13-99 Commutative rings and algebras 13-XX Commutative rings and algebras 13A02 Graded rings 13A05 Divisibility 13A10 Radical theory on commutative rings 13A15 Ideals; multiplicative ideal theory 13A18 Valuations and their generalizations 13A20 Brauer group 13A30 Associated graded rings of ideals and related topics 13A35 Characteristic p methods 13A50 Invariant theory 13A99 General commutative ring theory 13Axx General commutative ring theory 13B02 Extension theory (commutative rings) 13B05 Galois theory (commutative rings) 13B10 Automorphisms, etc. (commutative rings) 13B15 Ramification theory 13B21 Integral dependence 13B22 Integral closure; integrally closed rings, related rings 13B24 Going up; going down; going between 13B25 Polynomials over commutative rings 13B30 Localization 13B35 Completion of rings 13B40 Etale extensions, etc. 13B99 Ring extensions 13Bxx Ring extensions and related topics 13C05 Structure of modules (commutative rings) 13C10 Projective modules, etc. 13C11 Injective modules etc. 13C12 Torsion modules 13C13 Other special types of modules (commutative rings) 13C14 Cohen-Macaulay modules 13C15 Dimension theory, etc. (commutative rings) 13C20 Class groups 13C40 Linkage, complete intersections and determinantal ideals 13C99 Theory of modules and ideals 13Cxx Theory of modules (commutative rings) 13D02 Syzygies 13D03 (Co)homology of commutative rings and algebras 13D05 Homological dimension (commutative rings) 13D10 Infinitesimal methods, etc. 13D15 K-theory (commutative rings) 13D25 Complexes 13D30 Torsion theories (commutative rings) 13D40 Hilbert-Samuel functions and Poincare series 13D45 Local cohomology 13D99 Homological methods (commutative rings) 13Dxx Homological methods (commutative rings) 13E05 Noetherian rings and modules 13E10 Artinian rings and modules 13E15 Rings and modules of finite generation 13E99 Chain conditions, finiteness conditions 13Exx Chain conditions, finiteness conditions 13F05 Dedekind and Pruefer rings and their generalizations 13F07 Euclidean rings and generalizations 13F10 Principal ideal rings 13F15 Factorial rings, unique factorization domains 13F20 Polynomial rings 13F25 Formal power series rings 13F30 Valuation rings 13F40 Excellent rings 13F45 Seminormal rings 13F50 Rings with straightening laws, Hodge algebras 13F99 Arithmetic rings 13Fxx Arithmetic rings 13G05 Integral domains 13H05 Regular local rings 13H10 Special types of local rings 13H15 Multiplicity theory and related topics 13H99 Local rings 13Hxx Local rings and generalizations 13J05 Power series rings 13J07 Analytic algebras and rings 13J10 Complete rings, completion 13J15 Henselian rings 13J20 Global topological rings 13J25 Commutative ordered rings 13J99 Topological rings 13Jxx Topological rings 13K05 Witt vectors and related rings 13L05 Appl. of logic to commutative algebra 13M05 Structure of finite commutative rings 13M10 Polynomials over finite commutative rings 13M99 Finite commutative rings 13Mxx Finite commutative rings 13N05 Differential algebra (commutative algebra) 13N10 Rings of differential operators 13N99 Differential algebra 13Nxx Differential algebra 13P05 Polynomials, factorization 13P10 Polynomial ideals, Groebner bases 13P99 Computational aspects of commutative algebra 13Pxx Computational aspects of commutative algebra 14-00 Reference works (algebraic geometry) 14-01 Textbooks (algebraic geometry) 14-02 Research monographs (algebraic geometry) 14-03 Historical (algebraic geometry) 14-04 Machine computation, programs (algebraic geometry) 14-06 Proceedings of conferences (algebraic geometry) 14-99 Algebraic geometry 14-XX Algebraic geometry 14A05 Relevant commutative algebra 14A10 Varieties 14A15 Schemes 14A20 Generalizations (algebraic spaces, etc.) 14A22 Noncommutative algebraic geometry, etc. 14A25 Elementary questions of algebraic geometry 14A99 Foundations of algebraic geometry 14Axx Foundations of algebraic geometry 14B05 Singularities (algebraic geometry) 14B07 Deformations of singularities (local theory) 14B10 Infinitesimal methods 14B12 Local deformation theory 14B15 Local cohomology 14B20 Formal neighborhoods 14B99 Local algebraic geometry 14Bxx Local algebraic geometry 14C05 Parametrization 14C10 Equivalence relations (cycles) 14C15 Rational equivalence rings 14C17 Intersection theory 14C20 Divisors, linear systems, invertible sheaves 14C21 Webs, nets 14C22 Picard groups 14C25 Algebraic cycles 14C30 Transcendental methods 14C34 Torelli problem 14C35 Appl. of methods of algebraic K-theory 14C40 Riemann-Roch theorems 14C99 Cycles and subschemes 14Cxx Cycles and subschemes 14D05 Structure of families 14D07 Variation of Hodge structures 14D10 Arithmetic ground fields 14D15 (Formal) deformations 14D20 Algebraic moduli problems 14D22 Fine and coarse moduli spaces 14D25 Geometric invariants 14D99 Families, fibrations 14Dxx Families, fibrations 14E05 Birational correspondences 14E07 Birational automorphisms, Cremona group and generalizations 14E09 Automorphisms 14E10 General correspondences 14E15 Global theory of singularities 14E20 Coverings, fundamental group (mappings) 14E22 Ramification problems 14E25 Embeddings (algebraic varieties) 14E30 Minimal models 14E35 Results in dimension <=1 54F55 Unicoherence, multicoherence 54F65 Topological characterizations of particular spaces 54F99 Special properties of topological spaces 54Fxx Special properties of topological spaces 54G05 Extremally disconnected spaces, etc. 54G10 P-spaces 54G12 Scattered spaces 54G15 Pathological spaces 54G20 Counterexamples (general topology) 54G99 Peculiar topological spaces 54Gxx Peculiar topological spaces 54H05 Descriptive set theory (topological aspects) 54H10 Topological representations of algebraic systems 54H11 Topological groups (topological aspects) 54H12 Topological lattices (topological aspects) 54H13 Topological fields, etc. (topological aspects) 54H15 Transformation groups of topological spaces 54H20 Topological dynamics 54H25 Fixed-point theorems in topological spaces 54H99 Connections of general topology with other structures 54Hxx Connections of general topology with other structures 54J05 Nonstandard topology 55-00 Reference works (algebraic topology) 55-01 Textbooks (algebraic topology) 55-02 Research monographs (algebraic topology) 55-03 Historical (algebraic topology) 55-04 Machine computation, programs (algebraic topology) 55-06 Proceedings of conferences (algebraic topology) 55-99 Algebraic topology 55-XX Algebraic topology 55M05 Topological duality 55M10 Dimension theory (algebraic topology) 55M15 Absolute neighborhood retracts 55M20 Fixed points and coincidences (algebraic topology) 55M25 Degree, etc. 55M30 Lyusternik-Shnirel'man category of a space 55M35 Finite groups of transformations 55M99 Classical algebraic topology 55Mxx Classical topics of algebraic topology 55N05 Cech types 55N07 Steenrod-Sitnikov homologies 55N10 Singular theory 55N15 K-theory (algebraic topology) 55N20 Generalized homology and cohomology theories 55N22 Bordism and cobordism theories, etc. 55N25 Homology with local coefficients, equivariant cohomology 55N30 Sheaf cohomology 55N33 Intersection homology and cohomology 55N35 Other homology theories 55N40 Axioms for homology theory and uniqueness theorems 55N45 Products and intersections 55N91 Equivariant homology and cohomology 55N99 Homology and cohomology theories 55Nxx Homology and cohomology theories 55P05 Homotopy extension properties, cofibrations 55P10 Homotopy equivalences 55P15 Classification of homotopy type 55P20 Eilenberg-MacLane spaces 55P25 Spanier-Whitehead duality 55P30 Eckmann-Hilton duality 55P35 Loop spaces 55P40 Suspensions 55P42 Stable homotopy theory 55P45 H-spaces and duals 55P47 Infinite loop spaces 55P50 Category and cocategory 55P55 Shape theory 55P60 Localization and completion 55P62 Rational homotopy theory 55P65 Homotopy functors 55P91 Equivariant homotopy theory 55P99 Homotopy theory 55Pxx Homotopy theory 55Q05 General theory of homotopy groups 55Q07 Shape groups 55Q10 Stable homotopy groups 55Q15 Whitehead products and generalizations 55Q20 Homotopy groups of wedges, etc. 55Q25 Hopf invariants 55Q30 Homotopy groups of triads, n-ads 55Q35 Operations in homotopy groups 55Q40 Homotopy groups of spheres 55Q45 Stable homotopy of spheres 55Q50 J-morphism 55Q52 Homotopy groups of special spaces 55Q55 Cohomotopy groups 55Q70 Homotopy groups of special types 55Q91 Equivariant homotopy groups 55Q99 Homotopy groups 55Qxx Homotopy groups 55R05 Fiber spaces 55R10 Fiber bundles 55R12 Transfer 55R15 Classification 55R20 Spectral sequences and homology of fiber spaces 55R25 Sphere bundles and vector space bundles 55R35 Classifying spaces of groups and H-spaces 55R40 Homology of classifying spaces, characteristic classes 55R45 Homology and homotopy of BO and BU 55R50 Stable classes of vector space bundles, K-theory 55R55 Fiberings with singularities 55R60 Microbundles and block bundles 55R65 Generalizations of fiber spaces and bundles 55R91 Equivariant fiber spaces and bundles 55R99 Fiber spaces and bundles 55Rxx Fiber spaces and bundles 55S05 Primary cohomology operations 55S10 Steenrod algebra 55S12 Dyer-Lashof operations 55S15 Symmetric products, etc. 55S20 Secondary and higher cohomology operations 55S25 K-theory operations and generalized cohomology operations 55S30 Massey products 55S35 Obstruction theory 55S36 Extension and compression of mappings 55S37 Classification of mappings 55S40 Sectioning fiber spaces and bundles 55S45 Postnikov system, k-invariants 55S91 Equivariant operations and obstructions 55S99 Operations and obstructions 55Sxx Operations and obstructions 55T05 General spectral sequences 55T10 Serre spectral sequences 55T15 Adams spectral sequences 55T20 Eilenberg-Moore spectral sequences 55T25 Generalized cohomology 55T99 Spectral sequences 55Txx Spectral sequences 55U05 Abstract complexes 55U10 Semisimplicial complexes 55U15 Chain complexes 55U20 Universal coefficient theorems, Bockstein operator 55U25 Homology of a product, Kuenneth formula 55U30 Duality (applied homological algebra) 55U35 Abstract homotopy theory 55U40 Topological categories 55U99 Applied homological algebra and category theory 55Uxx Applied homological algebra and category theory 57-00 Reference works (manifolds) 57-01 Textbooks (manifolds) 57-02 Research monographs (manifolds) 57-03 Historical (manifolds) 57-04 Machine computation, programs (manifolds) 57-06 Proceedings of conferences (manifolds) 57-99 Manifolds and cell complexes 57-XX Manifolds and cell complexes 57M05 Fundamental group, etc. 57M07 Topological methods in group theory 57M10 Covering spaces 57M12 Special coverings 57M15 Relations with graph theory 57M20 Two-dimensional complexes 57M25 Knots and links in the 3-sphere 57M30 Wild knots and surfaces, wild imbeddings 57M35 Dehn's lemma, sphere theorem, loop theorem, asphericity 57M40 Characterizations of Euclidean 3-space and 3-sphere 57M50 Geometric structures on low-dimensional manifolds 57M60 Group actions in low dimensions 57M99 Low-dimensional topology 57Mxx Low-dimensional topology 57N05 Topology of Euclidean 2-space, 2-manifolds 57N10 Topology of general 3-manifolds 57N12 Topology of Euclidean 3-space and 3-sphere 57N13 Topology of Euclidean 4-space, 4-manifolds 57N15 Topology of Euclidean n-space, n-manifolds 57N17 Topology of topological vector spaces 57N20 Topology of infinite-dimensional manifolds 57N25 Shapes 57N30 Engulfing 57N35 Imbeddings and immersions (topological manifolds) 57N37 Isotopy and pseudo-isotopy 57N40 Neighborhoods of submanifolds 57N45 Flatness and tameness 57N50 (n-1)-sphere in Euclidean n-space 57N55 Microbundles and block bundles 57N60 Cellularity 57N65 Algebraic topology of manifolds 57N70 Cobordism and concordance 57N75 General position and transversality 57N80 Stratifications 57N99 Topological manifolds 57Nxx Topological manifolds 57P05 Local properties of generalized manifolds 57P10 Poincare duality spaces 57P99 Generalized manifolds 57Pxx Generalized manifolds 57Q05 General topology of complexes 57Q10 Simple homotopy type, etc. 57Q12 Wall finiteness obstruction for CW-complexes 57Q15 Triangulating manifolds 57Q20 Cobordism (PL-topology) 57Q25 Comparison of PL-structures 57Q30 Engulfing (PL-topology) 57Q35 Imbeddings and immersions (PL-topology) 57Q37 Isotopy (PL-topology) 57Q40 Regular neighborhoods 57Q45 Knots and links in high dimensions (PL-topology) 57Q50 Microbundles and block bundles (PL-topology) 57Q55 Approximations (PL-topology) 57Q60 Cobordism and concordance (PL-topology) 57Q65 General position and transversality (PL-topology) 57Q91 Equivariant PL-topology 57Q99 PL-topology 57Qxx PL-topology 57R05 Triangulating 57R10 Smoothing 57R12 Smooth approximations 57R15 Specialized structures on manifolds 57R19 Algebraic topology on manifolds 57R20 Characteristic classes and numbers 57R22 Topology of vector bundles and fiber bundles 57R25 Vector fields, frame fields 57R27 Controllability of vector fields on C-infinity (etc.) manifolds 57R30 Foliations; geometric theory 57R32 Classifying spaces for foliations 57R35 Differentiable mappings (differential topology) 57R40 Imbeddings (differential topology) 57R42 Immersions (differential topology) 57R45 Singularities of differentiable mappings 57R50 Diffeomorphisms 57R52 Isotopy (differential topology) 57R55 Differentiable structures 57R57 Appl. of global analysis to structures on manifolds 57R60 Homotopy spheres, Poincare conjecture 57R65 Surgery and handlebodies 57R67 Surgery obstructions, Wall groups 57R70 Critical points and critical submanifolds 57R75 O- and SO-cobordism 57R77 Complex cobordism (U- and SU-cobordism) 57R80 h- and s-cobordism 57R85 Equivariant cobordism 57R90 Other types of cobordism 57R91 Equivariant algebraic topology of manifolds 57R95 Realizing cycles by submanifolds 57R99 Differential topology 57Rxx Differential topology 57S05 Topological properties of groups of homeomorphisms, etc. 57S10 Compact groups of homeomorphisms 57S15 Compact Lie groups of differentiable transformations 57S17 Finite transformation groups 57S20 Noncompact Lie groups of transformations 57S25 Groups acting on specific manifolds 57S30 Discontinuous groups of transformations 57S99 Topological transformation groups 57Sxx Topological transformation groups 57T05 Hopf algebras 57T10 Homology and cohomology of Lie groups 57T15 Homology and cohomology of homogeneous spaces of Lie groups 57T20 Homotopy groups of topological groups and homogeneous spaces 57T25 Homology and cohomology of H-spaces 57T30 Bar and cobar constructions 57T35 Appl. of Eilenberg-Moore spectral sequences 57T99 Homology and homotopy of topological groups 57Txx Homology and homotopy of topological groups and related structures 58-00 Reference works (global analysis) 58-01 Textbooks (global analysis) 58-02 Research monographs (global analysis) 58-03 Historical (global analysis) 58-04 Machine computation, programs (global analysis) 58-06 Proceedings of conferences (global analysis) 58-99 Global analysis, analysis on manifolds 58-XX Global analysis 58A03 Topos-theoretic approach to differential manifolds 58A05 Foundations of differentiable manifolds 58A07 Real-analytic manifolds, etc. 58A10 Differential forms 58A12 de Rham theory (global analysis) 58A14 Hodge theory (global analysis) 58A15 Exterior differential systems (Cartan theory) 58A17 Pfaffian systems 58A20 Jets 58A25 Currents (global analysis) 58A30 Vector distributions (global analysis) 58A35 Stratified sets (global analysis) 58A40 Differential spaces (global analysis) 58A50 Supermanifolds, etc. (global analysis) 58A99 General theory of differentiable manifolds 58Axx General theory of differentiable manifolds 58B05 Topological questions of infinite-dimensional manifolds 58B10 Differentiability questions in infinite-dimensional manifolds 58B12 Questions of holomorphy in infinite-dimensional manifolds 58B15 Fredholm structures on infinite-dimensional manifolds 58B20 Geometric structures on infinite-dimensional manifolds 58B25 Group structures and generalizations on infinite-dim. manifolds 58B30 Noncommutative differential geometry and topology 58B99 Infinite-dimensional manifolds 58Bxx Infinite-dimensional manifolds 58C05 Real-valued functions on manifolds 58C06 Set-valued mappings etc. on manifolds 58C07 Continuity properties of mappings on manifolds 58C10 Holomorphic maps on manifolds (global analysis) 58C15 Implicit function theorems etc. on manifolds 58C20 Generalized differentiation theory on manifolds 58C25 Differentiable maps on manifolds (global analysis) 58C27 Singularities of differentiable maps on manifolds 58C28 Catastrophes 58C30 Fixed point theorems on manifolds 58C35 Integration on manifolds 58C40 Spectral theory on manifolds 58C50 Analysis on supermanifolds, etc. 58C99 Calculus on manifolds 58Cxx Calculus on manifolds 58D05 Groups of diffeomorphisms and homeomorphisms as manifolds 58D07 Groups and semigroups of nonlinear operators 58D10 Spaces of imbeddings and immersions 58D15 Manifolds of mappings 58D17 Manifolds of metrics 58D19 Global group actions and symmetry properties on manifolds 58D20 Measures on manifolds of maps 58D25 Differential equations in function spaces 58D27 Moduli problems for diff.geometric structures on spaces of mappings 58D29 Moduli problems for topological structures on manifolds of mappings 58D30 Spaces and manifolds of mappings in appl. to physics 58D99 Spaces and manifolds of mappings 58Dxx Spaces and manifolds of mappings 58E05 Abstract critical point theory 58E07 Abstract bifurcation theory 58E09 Group-invariant bifurcation theory 58E10 Appl. of bifurcation theory to geodesics 58E11 Critical metrics in infinite-dimensional spaces 58E12 Appl. of variational methods to minimal surfaces 58E15 Appl. of variational methods to extremal problems in sev.variables 58E17 Pareto optimality, etc., appl. to economics 58E20 Harmonic maps between infinite-dimensional spaces 58E25 Appl. of variational methods to control theory 58E30 Variational principles on infinite-dimensional spaces 58E35 Variational inequalities (global problems) 58E46 Variational problems under group actions on infinite-dim. spaces 58E50 Appl. of variational methods in infinite-dimensional spaces 58E99 Variational problems in infinite-dimensional spaces 58Exx Variational problems in infinite-dimensional spaces 58F03 One-dimensional dynamics, general; symbolic dynamics 58F05 Hamiltonian and Lagrangian systems on manifolds 58F06 Geometric quantization (appl. of representation theory) 58F07 Completely integrable dynamical systems 58F08 Point-mapping properties, iterations, completeness (dyn. systems) 58F09 Morse-Smale systems 58F10 Stability theory of ODE on manifolds 58F11 Ergodic theory of dynamical systems on manifolds 58F12 Structure of attractors 58F13 Pathologies of dynamical systems 58F14 Bifurcation theory and singularities of dynamical systems 58F15 Hyperbolic structures of dynamical systems 58F17 Geodesic and horocycle flows 58F18 Relations of dynamical systems with foliations 58F19 Eigenvalue and spectral problems of ODE on manifolds 58F20 Periodic points, etc. (dynamical systems) 58F21 Limit cycles, etc. of ODE on manifolds 58F22 Periodic solutions of ODE on manifolds 58F23 Holomorphic flows 58F25 Flows on manifolds (general aspects) 58F27 Quasiperiodic flows 58F30 Perturbations of dynamical systems 58F32 Functional-differential equations on manifolds 58F35 Invariance properties (ODE on manifolds) 58F36 Normal forms for ODE or diffeomorphisms 58F37 Correspondences and other transformation methods (ODE on manifolds) 58F39 Dynamical systems treatment of PDE 58F40 Appl. of ODE on manifolds to physics 58F99 ODE on manifolds and dynamical systems 58Fxx Ordinary differential equations on manifolds; dynamical systems 58G03 Elliptic equations on manifolds; general theory 58G05 Differential complexes on manifolds; elliptic complexes 58G07 Hyperfunctions on manifolds 58G10 Index theory and fixed point theorems (global analysis) 58G11 Heat and other parabolic equation methods (global analysis) 58G12 Exotic index theories (global analysis) 58G15 Pseudodifferential and Fourier integral operators on manifolds 58G16 Hyperbolic equations on manifolds 58G17 Propagation of singularities (PDE on manifolds) 58G18 Perturbations and asymptotics (PDE on manifolds) 58G20 Boundary value problems of PDE on manifolds 58G25 Spectral problems of PDE on manifolds, etc. 58G26 Determinants and determinant bundles on manifolds 58G28 Bifurcations (PDE on manifolds) 58G30 Relations of PDE with special manifold structures 58G32 Diffusion processes and stochastic analysis on manifolds 58G35 Invariance properties (PDE on manifolds) 58G37 Correspondences and other transformation methods (PDE on manifolds) 58G40 Appl. of PDE on manifolds to physics 58G99 Partial differential equations on manifolds 58Gxx Partial differential equations on manifolds; differential operators 58H05 Pseudogroups on manifolds 58H10 Cohomology of classifying spaces for pseudogroup structures 58H15 Global deformations of structures on manifolds 58H99 Pseudogroups and general structures on manifolds 58Hxx Pseudogroups and general structures on manifolds 58Z05 Appl. of global analysis to physics 60-00 Reference works (probability theory) 60-01 Textbooks (probability theory) 60-02 Research monographs (probability theory) 60-03 Historical (probability theory) 60-04 Machine computation, programs (probability theory) 60-06 Proceedings of conferences (probability theory) 60-99 Probability theory and stochastic processes 60-XX Probability theory and stochastic processes 60A05 Axioms of probability theory 60A10 Probabilistic measure theory 60A99 Foundations of probability theory 60Axx Foundations of probability theory 60B05 Probability measures on topological spaces 60B10 Convergence of probability measures 60B11 Probability theory on linear topological spaces 60B12 Limit theorems for vector-valued random variables (inf.-dim.case) 60B15 Probability measures on groups 60B99 Probability theory on general structures 60Bxx Probability theory on general structures 60C05 Combinatorial probability 60D05 Geometric probability 60E05 General theory of probability distributions 60E07 Infinitely divisible distributions 60E10 Transforms of probability distributions 60E15 Inequalities in probability theory 60E99 Distribution theory in probability theory 60Exx Distribution theory in probability theory 60F05 Weak limit theorems 60F10 Large deviations 60F15 Strong limit theorems 60F17 Functional limit theorems 60F20 Zero-one laws 60F25 Lp-limit theorems (probability) 60F99 Limit theorems (probability) 60Fxx Limit theorems (probability) 60G05 Foundations of stochastic processes 60G07 General theory of stochastic processes 60G09 Exchangeability 60G10 Stationary processes 60G12 General second order processes 60G15 Gaussian processes 60G17 Sample path properties 60G18 Self-similar processes 60G20 Generalized stochastic processes 60G25 Prediction theory 60G30 Induced measures of stochastic processes 60G35 Appl. of stochastic processes 60G40 Optimal stopping 60G42 Martingales with discrete parameter 60G44 Martingales with continuous parameter 60G46 Martingales and classical analysis 60G48 Generalizations of martingales 60G50 Sums of independent random variables 60G55 Point processes 60G57 Random measures 60G60 Random fields 60G70 Extreme value theory (probability) 60G99 Stochastic processes 60Gxx Stochastic processes 60H05 Stochastic integrals 60H07 Stochastic calculus of variations and the Malliavin calculus 60H10 Stochastic ordinary differential equations 60H15 Stochastic partial differential equations 60H20 Stochastic integral equations 60H25 Random operators, etc. 60H30 Appl. of stochastic analysis 60H99 Stochastic analysis 60Hxx Stochastic analysis 60J05 Markov processes with discrete parameter 60J10 Markov chains with discrete parameter 60J15 Random walk 60J20 Appl. of discrete Markov processes 60J25 Markov processes with continuous parameter 60J27 Markov chains with continuous parameter 60J30 Markov processes with independent increments 60J35 Transition functions 60J40 Right processes 60J45 Probabilistic potential theory 60J50 Boundary theory (probability) 60J55 Additive functionals 60J57 Multiplicative functionals 60J60 Diffusion processes 60J65 Brownian motion 60J70 Appl. of diffusion theory 60J75 Jump processes 60J80 Branching processes 60J85 Appl. of branching processes 60J99 Markov processes 60Jxx Markov processes 60K05 Renewal theory 60K10 Appl. of renewal theory 60K15 Markov renewal processes 60K20 Appl. of Markov renewal processes 60K25 Queueing theory 60K30 Appl. of queueing theory 60K35 Interacting random processes 60K40 Physical appl. of random processes 60K99 Special processes 60Kxx Special processes 62-00 Reference works (statistics) 62-01 Textbooks (statistics) 62-02 Research monographs (statistics) 62-03 Historical (statistics) 62-04 Machine computation, programs (statistics) 62-06 Proceedings of conferences (statistics) 62-07 Data analysis (statistics) 62-09 Graphical methods in statistics 62-99 Statistics 62-XX Statistics 62A05 Invariance and group considerations in statistics 62A10 The likelihood approach 62A15 The Bayesian approach 62A20 Classical approach in statistics 62A25 Structural approach in statistics 62A30 The fiducial approach 62A99 Foundations of statistics 62Axx Foundations of statistics 62B05 Sufficient statistics 62B10 Statistical information theory 62B15 Comparison of statistical experiments 62B20 Measure-theoretic results in statistics 62B99 Statistical sufficiency and information 62Bxx Statistical sufficiency and information 62C05 General considerations in statistical decision theory 62C07 Complete class results in statistical decision theory 62C10 Bayesian problems 62C12 Empirical statistical decision procedures 62C15 statistical admissibility 62C20 Statistical minimax procedures 62C25 Compound decision problems in statistics 62C99 Statistical decision theory 62Cxx Statistical decision theory 62D05 Statistical sampling theory 62E10 Structure theory of statistical distributions 62E15 Exact distribution theory in statistics 62E17 Approximations to statistical distributions (nonasymptotic) 62E20 Asymptotic distribution theory in statistics 62E25 Statistical Monte Carlo studies (distribution theory) 62E30 Formal computational methods for statistical distributions 62E99 Statistical distribution theory 62Exx Statistical distribution theory 62F03 Parametric hypothesis testing 62F04 Small sample properties of parametric tests 62F05 Asymptotic properties of parametric tests 62F07 Statistical ranking and selection procedures 62F10 Point estimation 62F11 Small sample properties of parametric estimators 62F12 Asymptotic properties of parametric estimators 62F15 Bayesian inference 62F25 Parametric confidence regions, etc. 62F30 Statistical inference under constraints 62F35 Robustness and adaptive procedures 62F99 Parametric inference 62Fxx Parametric inference 62G05 Nonparametric estimation 62G07 Curve estimation 62G09 Statistical resampling methods 62G10 Nonparametric hypothesis testing 62G15 Nonparametric confidence regions, etc. 62G20 Nonparametric asymptotic efficiency 62G30 Order statistics, etc. 62G35 Nonparametric robustness 62G99 Nonparametric inference 62Gxx Nonparametric inference 62H05 Multivariate structure theory 62H10 Multivariate distributions of statistics 62H11 Directional data; spatial statistics 62H12 Multivariate estimation 62H15 Multivariate hypothesis testing 62H17 Contingency (statistics) 62H20 Statistical measures of associations 62H25 Factor analysis, etc. 62H30 Statistical classification, etc. 62H40 Projection pursuit 62H99 Multivariate analysis 62Hxx Multivariate analysis 62J02 General nonlinear regression 62J05 Linear regression 62J07 Ridge regression 62J10 Analysis of variance, etc. 62J12 Generalized linear models 62J15 Multiple comparisons 62J20 Regression diagnostics 62J99 Linear statistical inference 62Jxx Linear statistical inference 62K05 Optimal statistical designs 62K10 Statistical block designs 62K15 Factorial statistical designs 62K99 Experimental statistical design 62Kxx Experimental statistical design 62L05 Sequential statistical designs 62L10 Sequential statistical analysis 62L12 Sequential estimation 62L15 Optimal stopping (statistics) 62L20 Stochastic approximation 62L99 Sequential statistical methods 62Lxx Sequential statistical methods 62M02 Markov processes: hypothesis testing 62M05 Markov processes: estimation 62M07 Non-Markovian processes: hypothesis testing 62M09 Non-Markovian processes: estimation 62M10 Time series, etc. (statistics) 62M15 Spectral analysis of processes 62M20 Prediction, etc. (statistics) 62M30 Statistics of spatial processes 62M40 Statistics of random fields 62M99 Inference from stochastic processes 62Mxx Inference from stochastic processes 62N05 Reliability, etc. (statistics) 62N10 Statistical quality control 62N99 Engineering statistics 62Nxx Engineering statistics 62P05 Appl. of statistics to actuarial sciences and financial mathematics 62P10 Appl. of statistics to biology 62P15 Appl. of statistics to psychology 62P20 Appl. of statistics to economics 62P25 Appl. of statistics to social sciences 62P99 Appl. of statistics 62Pxx Appl. of statistics 62Q05 Statistical tables 65-00 Reference works (numerical analysis) 65-01 Textbooks (numerical analysis) 65-02 Research monographs (numerical analysis) 65-03 Historical (numerical analysis) 65-04 Machine computation, programs (numerical analysis) 65-05 Experimental papers 65-06 Proceedings of conferences (numerical analysis) 65-99 Numerical analysis 65-XX Numerical analysis 65A05 Tables 65B05 Extrapolation to the limit 65B10 Summation of series 65B15 Euler-Maclaurin formula 65B99 Acceleration of convergence 65Bxx Acceleration of convergence 65C05 Monte Carlo methods 65C10 Random number generation 65C20 Models (numerical methods) 65C99 Numerical simulation 65Cxx Numerical simulation 65D05 Interpolation (numerical methods) 65D07 Splines (numerical methods) 65D10 Smoothing 65D15 Algorithms for functional approximation 65D17 Computer aided design (modeling of curves and surfaces) 65D20 Computation of special functions 65D25 Numerical differentiation 65D30 Numerical integration 65D32 Quadrature formulas (numerical methods) 65D99 Numerical approximation 65Dxx Numerical approximation 65E05 Numerical methods in complex analysis 65F05 Direct methods for linear systems 65F10 Iterative methods for linear systems 65F15 Eigenvalues (numerical linear algebra) 65F20 Overdetermined systems (numerical linear algebra) 65F25 Orthogonalization (numerical linear algebra) 65F30 Other matrix algorithms 65F35 Matrix norms, etc. (numerical linear algebra) 65F40 Determinants (numerical linear algebra) 65F50 Sparse matrices 65F99 Numerical linear algebra 65Fxx Numerical linear algebra 65G05 Roundoff error 65G10 Interval arithmetic 65G99 Error analysis 65Gxx Error analysis 65H05 Single nonlinear equations (numerical methods) 65H10 Systems of nonlinear equations (numerical methods) 65H17 Eigenvalue and bifurcation problems of nonlinear algebraic equations 65H20 Global methods, including homotopy approaches 65H99 Nonlinear algebraic or transcendental equations 65Hxx Nonlinear algebraic or transcendental equations 65J05 General theory of numerical methods in abstract spaces 65J10 Equations with linear operators (numerical methods) 65J15 Equations with nonlinear operators (numerical methods) 65J20 Improperly posed problems (numerical methods in abstract spaces) 65J99 Numerical analysis in abstract spaces 65Jxx Numerical analysis in abstract spaces 65K05 Mathematical programming (numerical methods) 65K10 Optimization techniques (numerical methods) 65K99 Numerical methods for mathematical programming and optimization 65Kxx Numerical methods in mathematical programming and optimization 65L05 Initial value problems for ODE (numerical methods) 65L06 Multistep, Runge-Kutta, and extrapolation methods 65L07 Numerical investigation of stability of solutions of ODE 65L08 Improperly posed problems for ODE (numerical methods) 65L10 Boundary value problems for ODE (numerical methods) 65L12 Finite difference methods for ODE 65L15 Eigenvalue problems for ODE (numerical methods) 65L20 Stability of numerical methods for ODE 65L50 Mesh generation and refinement (ODE) 65L60 Finite numerical methods for ODE 65L70 Error bounds (numerical methods for ODE) 65L99 Numerical methods for ODE 65Lxx Numerical methods for ODE 65M06 Finite difference methods (IVP of PDE) 65M12 Stability and convergence of numerical methods (IVP of PDE) 65M15 Error bounds (IVP of PDE) 65M20 Method of lines (IVP of PDE) 65M25 Method of characteristics (numerical) 65M30 Improperly posed problems (IVP of PDE, numerical methods) 65M50 Mesh generation and refinement (IVP of PDE) 65M55 Multigrid methods; domain decomposition (IVP of PDE) 65M60 Finite numerical methods (IVP of PDE) 65M70 Spectral, collocation and related methods (IVP of PDE) 65M99 Numerical methods for IVP of PDE 65Mxx Numerical methods for initial value problems (IVP) of PDE 65N06 Finite difference methods (BVP of PDE) 65N12 Stability and convergence of numerical methods (BVP of PDE) 65N15 Error bounds (BVP of PDE) 65N22 Solution of discretized equations (BVP of PDE) 65N25 Numerical methods for eigenvalue problems (BVP of PDE) 65N30 Finite numerical methods (BVP of PDE) 65N35 Collocation methods (BVP of PDE) 65N38 Boundary element methods (BVP of PDE) 65N40 Methods of lines (BVP of PDE) 65N45 Method of contraction of the boundary (BVP of PDE) 65N50 Mesh generation and refinement (BVP of PDE) 65N55 Multigrid methods; domain decomposition (BVP of PDE) 65N99 Numerical methods for BVP of PDE 65Nxx numerical methods for boundary value problems (BVP) of PDE 65P05 Numerical methods for miscellaneous problems of PDE 65Q05 Numerical methods for functional equations 65R10 Integral transforms (numerical methods) 65R20 Integral equations (numerical methods) 65R30 Improperly posed problems (integral equations, numerical methods) 65R99 Numerical methods for integral equations and transforms 65Rxx Numerical methods for integral equations and transforms 65S05 Graphical methods of numerical analysis 65T05 Numerical methods in harmonic analysis 65T10 Discrete and fast Fourier transforms 65T99 Numerical methods in Fourier analysis 65Txx Numerical methods in Fourier analysis 65U05 Numerical methods in probability and statistics 65Y05 Parallel computation (numerical methods) 65Y10 Algorithms for specific classes of architectures 65Y15 Packaged methods 65Y20 Complexity and performance of numerical algorithms 65Y25 Computer graphics and computational geometry 65Y99 Computer aspects of numerical algorithms 65Yxx Computer aspects of numerical algorithms 68-00 Reference works (computer science) 68-01 Textbooks (computer science) 68-02 Research monographs (computer science) 68-03 Historical (computer science) 68-04 Machine computation, programs (computer science) 68-06 Proceedings of conferences (computer science) 68-99 Computer science 68-XX Computer science 68M05 Computer system organization (general aspects) 68M07 Mathematical problems of computer architectures 68M10 Computer networks 68M15 Reliability and testing of computer systems 68M20 Performance evaluation of computer systems, etc. 68M99 Computer system organization 68Mxx Computer system organization 68N05 General theory of programming 68N15 Programming languages 68N17 Logic programming 68N20 Compilers and generators 68N25 Monitors and operating systems 68N99 Software 68Nxx Software 68P05 Data structures 68P10 Searching and sorting 68P15 Database theory 68P20 Information storage and retrieval 68P25 Data encryption 68P99 Theory of data 68Pxx Theory of data 68Q05 Models of computation 68Q10 Modes of computation 68Q15 Complexity classes of computation 68Q20 Nonnumerical algorithms 68Q22 Parallel and distributed algorithms 68Q25 Analysis of algorithms and problem complexity 68Q30 Algorithmic information theory 68Q35 VLSI algorithms 68Q40 Symbolic computation, algebraic computation 68Q42 Rewriting systems 68Q45 Formal languages 68Q50 Grammars 68Q52 Parsing 68Q55 Semantics 68Q60 Specification and verification of programs 68Q65 Abstract data types; algebraic specification 68Q68 Automata theory, general 68Q70 Algebraic theory of automata 68Q75 Stochastic and nondeterministic automata 68Q80 Cellular and array automata 68Q90 Transition nets 68Q99 Theory of computing 68Qxx Theory of computing 68R05 Combinatorics in connection with computer science 68R10 Graph theory in connection with computer science 68R15 Combinatorics on words 68R99 Discrete mathematics in relation to computer science 68Rxx Discrete mathematics in relation to computer science 68S05 Mathematical linguistics 68T01 Artificial intelligence (general aspects) 68T05 Learning and adaptive systems 68T10 Pattern recognition 68T15 Theorem proving 68T20 Problem solving 68T25 AI languages 68T27 AI logics 68T30 Knowledge representation 68T35 AI software systems 68T99 Artificial intelligence 68Txx Artificial intelligence 68U05 Computational geometry, etc. 68U07 Computer aided design 68U10 Image processing 68U15 Text processing 68U20 Simulation 68U30 Miscellaneous appl. of computers 68U99 Computing methodologies 68Uxx Computing methodologies 70-00 Reference works (mechanics of particles and systems) 70-01 Textbooks (mechanics of particles and systems) 70-02 Research monographs (mechanics of particles and systems) 70-03 Historical (mechanics of particles and systems) 70-04 Machine computation, programs (mechanics of particles and systems) 70-05 Experimental papers (mechanics of particles and systems) 70-06 Proceedings of conferences (mechanics of particles and systems) 70-08 Computational methods (mechanics of particles and systems) 70-99 Mechanics of particles and systems 70-XX Mechanics of particles and systems 70A05 Axiomatics, foundations (general mechanics) 70B05 Kinematics of particle 70B10 Kinematics of a rigid body 70B15 Mechanisms 70B99 Kinematics 70Bxx Kinematics 70C20 Statics 70D05 Newtonian dynamics 70D10 Lagrangian dynamics 70D99 Dynamics of a particle 70Dxx Dynamics of a particle 70E05 Motion of the gyroscope 70E10 Motion of streamlined bodies 70E15 Motion of rigid bodies 70E20 Perturbation methods for Euler's equations 70E99 Dynamics of a rigid body 70Exx Dynamics of a rigid body 70F05 Two-body problem 70F07 Three-body problem 70F10 n-body problem 70F15 Celestial mechanics 70F20 Holonomic systems 70F25 Nonholonomic systems 70F30 Impulsive motion 70F35 Collisions 70F99 Dynamics of a system of particles 70Fxx Dynamics of a system of particles 70G05 Geometrical methods in general mechanics 70G10 Generalized coordinates 70G15 Space of events 70G20 Impulse-energy space 70G25 Configuration space 70G30 State space 70G35 Phase space 70G50 Classical field theories (general) 70G99 General representations of dynamical systems 70Gxx General representations of dynamical systems 70H05 Hamilton's equations 70H10 Liouville's theorem 70H15 Canonical transformations 70H20 Hamilton-Jacobi equations 70H25 Hamilton's principle 70H30 Other variational principles (general mechanics) 70H33 Symmetries 70H35 Lagrange's equation of motion 70H40 Relativistic dynamics 70H99 Hamiltonian and Lagrangian mechanics 70Hxx Hamiltonian and Lagrangian mechanics 70J05 Linear vibrations of finite degree of freedom systems 70J10 Normal modes of linear vibrations 70J25 Stability of linear oscillatory motions 70J30 Free motions, etc. 70J35 Forced motions 70J40 Parametric resonances 70J99 Linear vibration theory 70Jxx Linear vibration theory (general mechanics) 70K05 Phase plane analysis (general mechanics) 70K10 Limit cycles (general mechanics) 70K15 Lyapunov theorems (general mechanics) 70K20 Stability of nonlinear oscillations (general mechanics) 70K25 Free motions 70K28 Parametric resonances 70K30 Nonlinear resonances (general mechanics) 70K40 Forced motions (general mechanics) 70K50 Transition to stochasticity (general mechanics) 70K99 Nonlinear motions 70Kxx Nonlinear oscillations (general mechanics) 70L05 Random vibrations (general mechanics) 70M20 Orbital mechanics 70P05 Variable mass 70Q05 Control of mechanical systems 73-00 Reference works (mechanics of solids) 73-01 Textbooks (mechanics of solids) 73-02 Research monographs (mechanics of solids) 73-03 Historical (mechanics of solids) 73-04 Machine computation, programs (mechanics of solids) 73-05 Experimental papers (mechanics of solids) 73-06 Proceedings of conferences (mechanics of solids) 73-99 Mechanics of solids 73-XX Mechanics of solids 73A05 Axiomatics, foundations of solid mechanics 73B05 Constitutive equations (mechanics of solids) 73B10 symmetry groups (mechanics of solids) 73B18 Nonlocal theories 73B25 Polar theories 73B27 Nonhomogeneous materials. Homogenization 73B30 Thermodynamics of solids 73B35 Random materials (mechanics of solids) 73B40 Anisotropic materials 73B50 Stress concentrations 73B99 Continuum mechanics 73Bxx Continuum mechanics (mechanics of solids) 73C02 Classical linear elasticity 73C05 Stress functions (elasticity) 73C10 Saint-Venant's principle 73C15 Uniqueness theorems in elasticity 73C35 Mixed boundary value problems in elasticity 73C50 Nonlinear elasticity 73C99 Elasticity 73Cxx Elasticity 73D05 Shock waves (mechanics of solids) 73D10 Integral transforms in solid mechanics 73D15 Body waves 73D20 Surface waves 73D25 Wave diffraction, etc. (mechanics of solids) 73D30 Linear vibrations of solids 73D35 Nonlinear vibrations of solids 73D40 Singular surfaces 73D50 Inverse problems in mechanics of solids 73D70 Random waves in mechanics of solids 73D99 Wave propagation in and vibrations of solids 73Dxx Wave propagation in and vibrations of solids 73E05 Constitutive specifications (Yield, flow, hardening) 73E10 Method of successive approximations in plasticity 73E20 Limit analysis in plasticity 73E50 Time-dependent problems in plasticity 73E60 Viscoplasticity 73E70 Plastic waves 73E99 Plasticity 73Exx Plasticity 73F05 Response functions in viscoelasticity 73F10 Correspondence principle in viscoelasticity 73F15 Time-dependent boundary value problems in viscoelasticity 73F20 Aging of materials 73F25 Environmental-dependent materials 73F99 Viscoelasticity 73Fxx Viscoelasticity 73G05 Finite elasticity 73G20 Finite plasticity 73G25 Finite viscoelasticity 73G99 Finite deformations 73Gxx Finite deformations (mechanics of solids) 73H05 Buckling 73H10 Dynamic stability (mechanics of solids) 73H99 Stability (mechanics of solids) 73Hxx Stability (mechanics of solids) 73K03 Strings 73K05 Rods, etc. 73K10 Plates, etc. 73K12 Dynamics of structures 73K15 Shells 73K20 Composite structures in mechanics of solids 73K35 Random excitation of structures 73K40 Optimization in structural mechanics 73K50 Control of structures 73K70 Aero- or hydromechanic structure interactions 73K99 Mechanics of structures 73Kxx Mechanics of structures 73M25 Fracture mechanics 73N20 Geophysical solid mechanics 73P05 Biomechanics of solids 73Q05 Soil and rock mechanics 73R05 Electromagnetic elasticity 73S10 Micromechanics of solids 73T05 Contact and surface mechanics 73V05 Finite element methods 73V10 Boundary element methods 73V15 Finite difference methods 73V20 Other numerical methods 73V25 Variational methods 73V30 Stochastic analysis 73V35 Complex variable techniques 73V99 Basic methods in solid mechanics 73Vxx Basic methods in solid mechanics 76-00 Reference works (fluid mechanics) 76-01 Textbooks (fluid mechanics) 76-02 Research monographs (fluid mechanics) 76-03 Historical (fluid mechanics) 76-04 Machine computation, programs (fluid mechanics) 76-05 Experimental papers (fluid mechanics) 76-06 Proceedings of conferences (fluid mechanics) 76-99 Fluid mechanics 76-XX Fluid mechanics 76A02 Foundations of fluid mechanics 76A05 Non-Newtonian fluids 76A10 Viscoelastic fluids 76A15 Liquid crystals 76A99 Foundations, constitutive equations, rheology 76Axx Foundations, constitutive equations, etc. 76B05 Airfoil theory 76B10 Free-streamline theory and appl. 76B15 Wave motions (fluid mechanics) 76B20 Ship waves 76B25 Solitary waves, etc. (inviscid fluids) 76B35 Random waves (inviscid fluids) 76B40 Added mass computations (fluid mechanics) 76B45 Capillarity 76B99 Incompressible inviscid fluids, potential theory 76Bxx Incompressible inviscid fluids, potential theory 76C05 Vorticity flows 76C10 Internal waves (inviscid fluids) 76C15 Atmospheric waves 76C20 Rossby waves (fluid mechanics) 76C99 Incompressible inviscid fluids, vorticity flows 76Cxx Incompressible inviscid fluids, vorticity flows 76D05 Navier-Stokes equations (fluid dynamics) 76D07 Stokes flows 76D08 Lubrication theory 76D10 Boundary-layer theory (incompressible fluids) 76D15 Boundary-layer separation and reattachment 76D20 Higher-order effects in boundary layers 76D25 Wakes and jets (viscous fluids) 76D30 Singular perturbation problems (viscous fluids) 76D33 Waves in incompressible viscous fluids 76D35 Random waves (viscous fluids) 76D45 Capillarity 76D99 Incompressible viscous fluids 76Dxx Incompressible viscous fluids 76E05 Stability of parallel flows 76E10 Inertial instability (fluid mechanics) 76E15 Convective instability (fluid mechanics) 76E20 Instability of flows in nature 76E25 Instabilities in presence of electromagnetic forces 76E30 Nonlinear effects (fluid mechanics) 76E99 Hydrodynamic stability 76Exx Hydrodynamic stability 76F05 Homogeneous isotropic turbulence 76F10 Shear flows 76F20 Turbulence via chaos techniques 76F99 Turbulence 76Fxx Turbulence 76G25 General aerodynamics and subsonic flows 76H05 Transonic flows 76J20 Supersonic flows 76K05 Hypersonic flows 76L05 Shock waves (fluid mechanics) 76M10 Finite element methods 76M15 Boundary element methods 76M20 Finite difference methods 76M25 Other numerical methods 76M30 Variational methods 76M35 Stochastic analysis 76M99 Basic methods in fluid mechanics 76Mxx Basic methods in fluid mechanics 76N10 Compressible fluids, general 76N15 Gas dynamics, general 76N20 Boundary layer theory 76N99 Compressible fluids and gas dynamics, general 76Nxx Compressible fluids and gas dynamics, general 76P05 Molecular or atomic structure 76Q05 Density waves (fluid mechanics) 76R05 Forced convection 76R10 Free convection 76R50 Diffusion 76R99 Diffusion and convection 76Rxx Diffusion and convection (fluid mechanics) 76S05 Flows in porous media 76T05 Several phase flows 76U05 Rotating fluids 76V05 Interacting phases (fluid mechanics) 76W05 Flows in presence of electromagnetic forces 76X05 Plasmic flows 76Y05 Nonclassical hydrodynamics 76Z05 Physiological flows 76Z10 Biopropulsion 76Z99 Biological fluid mechanics 76Zxx Biological fluid mechanics 78-00 Reference works (optics, electromagnetic theory) 78-01 Textbooks (optics, electromagnetic theory) 78-02 Research monographs (optics, electromagnetic theory) 78-03 Historical (optics, electromagnetic theory) 78-04 Machine computation, programs (optics, electromagnetic theory) 78-05 Experimental papers (optics, electromagnetic theory) 78-06 Proceedings of conferences (optics, electromagnetic theory) 78-08 Computational methods (optics, electromagnetic theory) 78-99 Optics, electromagnetic theory 78-XX Optics, electromagnetic theory 78A02 Foundations of optics and electromagnetic theory 78A05 Geometric optics 78A10 Physical optics 78A15 Electron optics 78A20 Space charge waves 78A25 General electromagnetic theory 78A30 Electro- and magnetostatics 78A35 Motion of charged particles 78A40 Waves and radiation 78A45 Diffraction, scattering (optics) 78A50 Antennas, wave-guides 78A55 Technical appl. of optics and electromagnetic theory 78A60 Lasers, etc. 78A70 Biological appl. of optics and electromagnetic theory 78A97 Mathematically heuristic optics and electromagnetic theory 78A99 Miscellaneous topics in optics and electromagnetic theory 80-00 Reference works (classical thermodynamics) 80-01 Textbooks (classical thermodynamics) 80-02 Research monographs (classical thermodynamics) 80-03 Historical (classical thermodynamics) 80-04 Machine computation, programs (classical thermodynamics) 80-05 Experimental papers (classical thermodynamics) 80-06 Proceedings of conferences (classical thermodynamics) 80-08 Computational methods (classical thermodynamics) 80-99 Classical thermodynamics, heat transfer 80-XX Classical thermodynamics, heat transfer 80A05 Foundations of classical thermodynamics 80A10 Classical thermodynamics 80A15 Thermodynamics of mixtures 80A20 Heat and mass transfer 80A22 Stefan problems, etc. 80A23 Inverse problems (thermodynamics) 80A25 Combustion, interior ballistics 80A30 Chemical kinetics 80A32 Chemically reacting flows 80A50 Thermodynamical problems in chemistry 80A97 Mathematically heuristic classical thermodynamics 80A99 Miscellaneous topics in classical thermodynamics 81-00 Reference works (quantum theory) 81-01 Textbooks (quantum theory) 81-02 Research monographs (quantum theory) 81-03 Historical (quantum theory) 81-04 Machine computation, programs (quantum theory) 81-05 Experimental papers (quantum theory) 81-06 Proceedings of conferences (quantum theory) 81-08 Computational methods (quantum theory) 81-99 Quantum theory 81-XX Quantum Theory 81P05 General and philosophical topics in quantum theory 81P10 Logical foundations of quantum mechanics 81P15 Quantum measurement theory 81P20 Stochastic mechanics (including stochastic electrodynamics) 81P99 Axiomatics, foundations, philosophy of quantum theory 81Pxx Axiomatics, foundations, philosophy of quantum theory 81Q05 Closed and approximate solutions to quantum-mechanical equations 81Q10 Selfadjoint operator theory in quantum theory 81Q15 Perturbation theories for operators and differential equations 81Q20 Semi-classical techniques in quantum theory 81Q30 Feynman integrals and graphs 81Q40 Integral equations in quantum theory 81Q50 Quantum chaos 81Q60 Supersymmetric quantum mechanics 81Q99 General mathematical topics and methods in quantum theory 81Qxx General mathematical topics and methods in quantum theory 81R05 Repres. of finite-dim. groups and algebras from quantum theory 81R10 Repres. of infinite-dim. groups and algebras from quantum theory 81R20 Covariant wave equations 81R25 Spinor and twistor methods in quantum theory 81R30 Coherent states in quantum theory 81R40 Symmetry breaking 81R50 Quantum groups and related algebraic methods in quantum theory 81R99 Groups and algebras in quantum theory 81Rxx Groups and algebras in quantum theory 81S05 Commutation relations (quantum theory) 81S10 Geometric quantization, symplectic methods 81S20 Stochastic quantization 81S25 Quantum stochastic calculus 81S30 Phase space methods in quantum mechanics 81S40 Path integrals in quantum mechanics 81S99 General quantum mechanics and problems of quantization 81Sxx General quantum mechanics and problems of quantization 81T05 Axiomatic quantum field theory 81T08 Constructive quantum field theory 81T10 Model quantum field theories 81T13 Gauge theories 81T15 Perturbative methods of renormalization 81T16 Nonperturbative methods of renormalization 81T17 Renormalization group methods 81T18 Feynman diagrams 81T20 Quantum field theory on curved space backgrounds 81T25 Quantum field theory on lattices 81T27 Continuum limits 81T30 String and superstring theories 81T40 Two-dimensional field theories, etc. 81T50 Anomalies in field theory 81T60 Supersymmetric field theories 81T70 Quantization in field theory; cohomological methods 81T80 Simulation and numerical modelling of fields 81T99 Quantum field theory 81Txx Quantum field theory and related classical field theories 81U05 2-body potential scattering theory 81U10 n-body potential scattering theory 81U20 S-matrix theory, etc. 81U30 Dispersion theory, dispersion relations (quantum theory) 81U40 Inverse scattering problems (quantum theory) 81U99 Scattering theory (quantum theory) 81Uxx Scattering theory (quantum theory) 81V05 Strong interaction 81V10 Electromagnetic interaction 81V15 Weak interaction 81V17 Gravitational interaction 81V19 Other fundamental interactions 81V22 Unified theories of elementary partcles 81V25 Other elementary particle theory 81V35 Appl. of quantum theory to nuclear physics 81V45 Appl. of quantum theory to atomic physics 81V55 Appl. of quantum theory to molecular physics 81V70 Appl. of quantum theory to many-body systems 81V80 Appl. of quantum theory to quantum optics 81V99 Appl. of quantum theory to specific physical systems 81Vxx Appl. of quantum theory to specific physical systems 82-00 Reference works (statistical mechanics) 82-01 Textbooks (statistical mechanics) 82-02 Research monographs (statistical mechanics) 82-03 Historical (statistical mechanics) 82-04 Machine computation, programs (statistical mechanics) 82-05 Experimental papers (statistical mechanics) 82-06 Proceedings of conferences (statistical mechanics) 82-08 Computational methods (statistical mechanics) 82-99 Statistical mechanics, structure of matter 82-XX Statistical mechanics, structure of matter 82B03 Foundations of equilibrium statistical mechanics 82B05 Classical equilibrium statistical mechanics (general) 82B10 Quantum equilibrium statistical mechanics (general) 82B20 Lattice systems 82B21 Continuum models (systems of particles, etc.) 82B23 Exactly solvable models 82B24 Interface problems (equilibrium) 82B26 Phase transitions (general) 82B27 Critical phenomena 82B28 Renormalization group methods 82B30 Statistical thermodynamics 82B31 Stochastic methods in equilibrium statistical mechanics 82B35 Irreversible thermodynamics 82B40 Kinetic theory of gases 82B41 Random walks, etc. (statistical mechanics) 82B43 Percolation 82B44 Disordered systems 82B80 Numerical methods in equilibrium statistical mechanics 82B99 Equilibrium statistical mechanics 82Bxx Equilibrium statistical mechanics 82C03 Foundations of time-dependent statistical mechanics 82C05 Classical dynamic and nonequilibrium statistical mechanics (general) 82C10 Quantum dynamics and nonequilibrium statistical mechanics (general) 82C20 Dynamic lattice systems 82C21 Dynamic continuum models 82C22 Interacting particle systems 82C23 Exactly solvable dynamic models 82C24 Interface problems (dynamic and non-equilibrium) 82C26 Dynamic and nonequilibrium phase transitions (general) 82C27 Dynamic critical phenomena 82C28 Dynamic renormalization group methods 82C31 Stochastic methods in time-dependent statistical mechanics 82C32 Neural nets 82C35 Irreversible thermodynamics 82C40 Kinetic theory of gases 82C41 Dynamics of random walks, etc. 82C43 Time-dependent percolation 82C44 Dynamics of disordered systems 82C70 Transport processes 82C80 Numerical methods of time-dependent statistical mechanics 82C99 Time-dependent statistical mechanics 82Cxx Time-dependent statistical mechanics (dynamic and non-equilibrium) 82D05 Gases 82D10 Plasmas 82D15 Liquids 82D20 Solids 82D25 Crystals 82D30 Random media, etc. 82D35 Metals 82D40 Magnetic materials 82D45 Ferroelectrics 82D50 Superfluids 82D55 Superconductors 82D60 Polymers 82D75 Nuclear reactor theory 82D99 Appl. to specific physical systems 82Dxx Appl. to specific physical systems 83-00 Reference works (relativity) 83-01 Textbooks (relativity) 83-02 Research monographs (relativity) 83-03 Historical (relativity) 83-04 Machine computation, programs (relativity) 83-05 Experimental papers (relativity) 83-06 Proceedings of conferences (relativity) 83-08 Computational methods (relativity) 83-99 Relativity and gravitational theory 83-XX Relativity and gravitational theory 83A05 Special relativity 83B05 Observational and experimental questions of relativity 83C05 Einstein's equations 83C10 Equations of motion 83C15 Closed form solutions of equations in general relativity 83C20 Classes of solutions of equations in general relativity 83C22 Electromagnetic fields, Einstein-Maxwell equations 83C25 Approximation procedures (general relativity) 83C27 Discrete methods in general relativity 83C30 Asymptotic procedures (general relativity) 83C35 Gravitational waves 83C40 Groups of motions, etc. 83C45 Quantization of the gravitational field 83C47 Quantum field theory on curved space-times 83C50 Electromagnetic fields 83C55 Hydrodynamics (general relativity) 83C57 Black holes 83C60 Spinor and twistor methods in general retativity 83C75 Space-time singularities, etc. 83C99 General relativity 83Cxx General relativity 83D05 Relativistic gravitational theories other than Einstein's 83E05 Geometrodynamics 83E15 Higher-dimensional field theories 83E30 String and superstring theories 83E50 Supergravity 83E99 Unified, higher-dimensional and super field theories 83Exx Unified field theories, etc. 83F05 Relativistic cosmology 85-00 Reference works (astronomy and astrophysics) 85-01 Textbooks (astronomy and astrophysics) 85-02 Research monographs (astronomy and astrophysics) 85-03 Historical (astronomy and astrophysics) 85-04 Machine computation, programs (astronomy and astrophysics) 85-05 Experimental papers (astronomy and astrophysics) 85-06 Proceedings of conferences (astronomy and astrophysics) 85-08 Computational methods (astronomy and astrophysics) 85-99 Astronomy and astrophysics 85-XX Astronomy and astrophysics 85A04 General topics of astronomy and astrophysics 85A05 Galactic and stellar dynamics 85A15 Galactic and stellar structure 85A20 Stellar atmospheres 85A25 Radiative transfer 85A30 Hydrodynamic and hydromagnetic problems in astrophysics 85A35 Statistical astronomy 85A40 Nonrelativistic cosmology 85A45 Radio astronomy 85A99 Miscellaneous topics in astronomy and astrophysics 86-00 Reference works (geophysics) 86-01 Textbooks (geophysics) 86-02 Research monographs (geophysics) 86-03 Historical (geophysics) 86-04 Machine computation, programs (geophysics) 86-05 Experimental papers (geophysics) 86-06 Proceedings of conferences (geophysics) 86-08 Computational methods (geophysics) 86-99 Geophysics 86-XX Geophysics 86A04 General topics of geophysics 86A05 Hydrology, hydrography, oceanography 86A10 Meteorology 86A15 Seismology 86A17 Global dynamics, earthquake problems 86A20 Potentials, prospecting 86A22 Inverse problems in geophysics 86A25 Geo-electricity and geomagnetism 86A30 Geodesy 86A32 Geostatistics 86A40 Glaciology 86A60 Geological problems 86A99 Miscellaneous topics in geophysics 90-00 Reference works (optimization) 90-01 Textbooks (optimization) 90-02 Research monographs (optimization) 90-03 Historical (optimization) 90-04 Machine computation, programs (optimization) 90-06 Proceedings of conferences (optimization) 90-08 Computational methods (optimization) 90-99 Optimization 90-XX Optimization 90A05 Decision theory 90A06 Individual preferences 90A07 Group preferences 90A08 Social welfare 90A09 Finance, etc. 90A10 Utility theory 90A11 Production theory, etc. 90A12 Price theory and market structure 90A14 General economic equilibrium theory 90A15 General economic models, etc. 90A16 Dynamic economic models, etc. 90A17 Multisectoral economic models 90A19 Statistical methods in mathematical economics 90A20 Economic time series analysis 90A25 Spatial economic models 90A27 Public goods 90A28 Voting theory 90A30 Environmental economics 90A35 Informational economics 90A36 Incentives theory 90A40 Consumer behavior, demand theory 90A43 Expected utility, etc. 90A46 Risk theory 90A50 Labor market 90A53 Special types of economies 90A56 Special types of economic equilibria 90A58 Models of real world systems, etc. 90A60 Market models 90A70 Macro-economic policy-making 90A80 Resource allocation 90A99 Mathematical economics 90Axx Mathematical economics 90B05 Inventory management 90B06 Transportation, logistics 90B10 Flows in networks 90B12 Communication networks 90B15 Flows in networks with stochastic elements 90B20 Highway traffic 90B22 Queues and service 90B25 Reliability, etc. 90B30 Production models 90B35 Scheduling theory 90B40 Search theory 90B50 Multiple-criteria decision making 90B60 Marketing, advertising 90B70 Theory of organizations, etc. 90B80 Discrete location and assignment 90B85 Continuous location 90B90 Case-oriented studies in OR 90B99 Operations research and management science 90Bxx Operations research and management sience 90C05 Linear programming 90C06 Large-scale problems 90C08 Special problems of linear programming 90C09 Boolean programming 90C10 Integer programming 90C11 Mixed integer programming 90C15 Stochastic programming 90C20 Quadratic programming 90C25 Convex programming 90C26 Nonconvex programming 90C27 Combinatorial programming 90C28 Geometric programming 90C29 Multi-objective programming, etc. 90C30 Nonlinear programming 90C31 Sensitivity, etc. 90C32 Fractional programming 90C33 Complementarity problems 90C34 Semi-infinite programming 90C35 Network programming 90C39 Dynamic programming 90C40 Markov decision processes, etc. 90C42 Markov and Markov renewal programming 90C48 Programming in abstract spaces 90C60 Abstract computational complexity for math. programming problems 90C70 Fuzzy programming 90C90 Appl. of mathematical programming 90C99 Mathematical programming 90Cxx Mathematical programming 90D05 2-person games 90D06 n-person games (n>2) 90D10 Noncooperative games 90D12 Cooperative games 90D13 Games with infinitely many players 90D15 Stochastic games 90D20 Multistage games 90D25 Differential games 90D26 Pursuit and evasion games 90D35 Decision theory for games 90D40 Game theory models 90D42 Positional games 90D43 Games involving graphs 90D44 Games involving topology or set theory 90D46 Combinatorial games 90D50 Discrete-time games 90D55 Games of timing 90D60 Probabilistic games 90D65 Hierarchical games 90D70 Spaces of games 90D80 Appl. of game theory 90D99 Game theory 90Dxx Game theory 92-00 Reference works (appl. to natural and behavioral sciences) 92-01 Textbooks (appl. to natural etc. sciences) 92-02 Research monographs (appl. to natural/behavioral sciences) 92-03 Historical (appl. to natural and behavioral sciences) 92-04 Machine computation, programs (appl. to natural/behavioral sciences) 92-06 Proceedings of conferences (appl. to natural/behavioral sciences) 92-08 Computational methods (appl. to natural and behavioral sciences) 92-99 Appl. of mathematics in natural and behavioral sciences 92-XX Appl. of mathematics to natural and behavioral sciences 92B05 General biology and biomathematics 92B10 Taxonomy, etc. 92B15 General biostatistics 92B20 General theory of neural networks 92B99 Mathematical biology 92Bxx Mathematical biology in general 92C05 Biophysics 92C10 Biomechanics 92C15 Developmental biology, etc. 92C20 Neural biology 92C30 Physiology 92C35 Physiological flows 92C40 Biochemistry, etc. 92C45 Kinetics in biochemical problems 92C50 Medical appl. of mathematical biology 92C55 Tomography 92C60 Medical epidemiology 92C99 Physiological, cellular and medical topics 92Cxx Physiological, cellular and medical topics 92D10 Genetics 92D15 Problems related to evolution 92D20 Protein sequences, DNA sequences 92D25 Population dynamics 92D30 Epidemiology 92D40 Ecology 92D50 Animal behavior 92D99 Genetics and population dynamics 92Dxx Genetics and population dynamics 92E10 Chemical structures 92E20 Chemical flows, reactions, etc. 92E99 Appl. of mathematics to chemistry 92Exx Chemistry 92F05 Appl. of mathematics to other natural sciences 92G05 Measurement theory (social and behavioral sciences) 92G10 One- and multidimensional scaling 92G20 Test theory (social and behavioral sciences) 92G25 Questionnaire analysis 92G30 Clustering (social and behavioral sciences) 92G40 Q-analysis 92G99 Appl. of mathematics to social and behavioral sciences 92Gxx Social and behavioral sciences: methodology 92H10 Models of societies, etc. 92H20 Mathematical geography and demography 92H25 Spatial models in sociology 92H30 Social networks 92H35 Manpower systems 92H99 Mathematyical sociology 92Hxx Mathematical sociology 92J10 Cognitive psychology 92J30 Psychophysics and psychophysiology 92J40 Memory and learning 92J45 Measurement and performance psychology 92J99 Mathematical psychology 92Jxx Mathematical psychology 92K10 Mathematical treatment of history and political sciences 92K20 Mathematical treatment of linguistics 92K99 Mathematical treatment of other social and behavioral sciences 92Kxx Mathematical treatment of other social and behavioral sciences 93-00 Reference works (systems and control) 93-01 Textbooks (systems and control) 93-02 Research monographs (systems and control) 93-03 Historical (systems and control) 93-04 Machine computation, programs (systems and control) 93-06 Proceedings of conferences (systems and control) 93-99 Systems and control 93-XX Systems theory; control 93A05 Axiomatic system theory 93A10 General systems 93A13 Hierarchical systems 93A14 Decentralized systems 93A15 Large scale systems 93A20 Cascaded systems 93A25 Input-output systems 93A30 Mathematical modelling of systems 93A99 General systems theory 93Axx General systems theory 93B03 Attainable sets 93B05 Controllability 93B06 Relations between controllability and optimal solutions 93B07 Observability 93B10 Canonical structure of systems 93B11 System structure simplification 93B12 Variable structure systems 93B15 Realizability of systems from input-output data 93B17 System transformation 93B18 Linearizability of systems 93B20 Minimal systems representations 93B25 Algebraic theory of control systems 93B27 Geometric methods in systems theory 93B28 Operator-theoretic methods in systems theory 93B29 Differential-geometric methods in systems theory 93B30 System identification 93B35 Sensitivity (robustness) of control systems 93B36 H-infinity-control 93B40 Computational methods in systems theory 93B50 Synthesis problems 93B51 Design techniques in systems theory 93B52 Feedback control 93B55 Pole and zero placement problems 93B60 Eigenvalue problems in systems theory 93B99 Controllability, observability, and system structure 93Bxx Controllability, observability, and system structure 93C05 Linear control systems 93C10 Nonlinear control systems 93C15 Control systems governed by ODE 93C20 Control systems governed by PDE 93C22 Control systems governed by integral equations 93C25 Control systems in abstract spaces 93C30 Control systems governed by other functional relations 93C35 Multivariable, multidimensional control systems 93C40 Adaptive control systems 93C41 Control problems with incomplete information 93C42 Fuzzy control 93C45 Time-invariant control systems 93C50 Time-dependent control systems 93C55 Discrete-time control systems 93C57 Sampled-data control systems 93C60 Continuous-time control systems 93C62 Digital control systems 93C70 Time-scale analysis and related topics 93C73 Perturbations in control systems 93C80 Frequency-response methods 93C83 Control problems involving computers 93C85 Automated control systems 93C90 Random disturbances in control systems 93C95 Appl. of control theory 93C99 Control systems, guided systems 93Cxx Control systems, guided systems 93D05 Lyapunov and other classical stabilities of control systems 93D09 Robust stability of control systems 93D10 Popov-type stability of feedback systems 93D15 Stabilization of systems by feedback 93D20 Asymptotic stability of control systems 93D21 Adaptive and robust stabilization 93D22 Interrelations between stability problems and optimization problems 93D25 Input-output approaches to stability of control systems 93D30 Scalar and vector Lyapunov functions 93D99 Stability of control systems 93Dxx Stability of control systems 93E03 General theory of stochastic systems 93E05 Stochastic games, etc. 93E10 Estimation and detection in stochastic control 93E11 Filtering in stochastic control 93E12 System identification (stochastic systems) 93E14 Data smoothing (stochastic systems) 93E15 Stochastic stability 93E20 Optimal stochastic control (systems) 93E23 Stochastic gradient methods 93E24 Least squares and related methods in stochastic control 93E25 Computational methods in stochastic control 93E30 Computer simulations of stochastic systems 93E35 Stochastic learning and adaptive control 93E99 Stochastic systems and stochastic control 93Exx Stochastic systems and control 94-00 Reference works (information and communication) 94-01 Textbooks (information and communication) 94-02 Research monographs (information and communication) 94-03 Historical (information and communication) 94-04 Machine computation, programs (information and communication) 94-06 Proceedings of conferences (information and communication) 94-99 Information and communication 94-XX Information and communication 94A05 Communication theory 94A11 Application of orthogonal functions in communication 94A12 Signal theory 94A13 Detection theory 94A14 Modulation and demodulation 94A15 General topics of information theory 94A17 Measures of information 94A24 Coding theorems (Shannon theory) 94A29 Source coding 94A34 Rate-distortion theory 94A40 Channel models 94A45 Codes in connection with formal languages 94A50 Theory of questionnaires 94A55 Shift register sequences 94A60 Cryptography 94A99 Communication and information 94Axx Communication, information 94B05 General theory of linear codes 94B10 Convolutional codes 94B12 Combined modulation schemes 94B15 Cyclic codes 94B20 Burst-correcting codes 94B25 Combinatorial codes 94B27 Geometric methods in coding theory 94B30 Majority codes 94B35 Decoding 94B40 Arithmetic codes 94B50 Synchronization error-correcting codes 94B60 Other types of codes 94B65 Bounds on codes 94B70 Error probability for codes 94B75 Appl. of convex sets and geometry of numbers in coding theory 94B99 Theory of error-correcting codes 94Bxx Theory of error-correcting codes 94C05 Analytic circuit theory 94C10 Switching theory 94C12 Fault detection 94C15 Appl. of graph theory to circuits and networks 94C30 Appl. of design theory to circuits and networks 94C99 Circuits, networks 94Cxx Circuits, networks 94D05 Fuzzy sets and logic in connection with communication

    31. List KWIC DDC And MSC Lexical Connection
    force and energy 118 forced convection 76R05 forced motions 70J35 forced motions 70K40 forces centrifugal and centripetal 531.35 forcing Modeltheoretic
    http://www.mi.imati.cnr.it/~alberto/dml_11_17.htm
    finite groups and their modules # group rings of
    finite groups of Lie type # representations of
    finite groups of transformations (including Smith theory)
    finite incidence structures # other
    finite linear geometries # other
    finite models # descriptive complexity and
    finite nonlinear geometries # other
    finite partial geometries (general), nets, partial spreads
    finite projective spaces # combinatorial structures in
    finite rings and finite-dimensional algebras
    finite simple groups # relationship to Lie algebras and finite structures finite symmetric groups # representations of finite transformation groups finite type conditions on $CR$ manifolds finite type domains finite type, tiling dynamics # multi-dimensional shifts of finite upper-half planes finite volume methods finite volume methods finite, local, global) # arithmetic ground fields ( finite, tame, wild, etc.) # representation type ( finite-dimensional finite-dimensional algebras # finite rings and finite-dimensional Banach spaces (including special norms, zonoids, etc.) finite-dimensional groups and algebras motivated by physics and their representations finite-dimensional Hamiltonian, Lagrangian, contact, and nonholonomic systems

    32. Toronto Set Theory Seminar
    Abstract Continuing the study of topological consequences of forcing chain of Modeltheoretic structures producing the Fraisse-Jonsson limit structure.
    http://www.atkinson.yorku.ca/~szeptycki/seminar/seminar07.html
    Toronto Set Theory Seminar - Year 2007.
    • Friday, December 7, 1:30-3:00pm in Fields Institue room 210
      Vera Fischer (York University
    • Friday November 30, 1:30-3:00pm in Fields Institute room 210
      Greg Hjorth (University of Melbourne, UCLA)
      Ends and percolation
      Abstract: This is part of joint with Inessa Epstein, where we analyze countable Borel equivalence relations with many ends and the actions of groups with many ends. As a consequence of this work we obtain a result regarding the percolation on non-amenable groups that have infinite normal amenable subgroups.
    • Friday November 23, 1:30-3:00pm in Fields Institute room 210
      Marton Elekes (Hungarian Academy of Sciences)
      Partitioning multiple covers into many subcovers
      abstract

    • Friday, November 16th, 1:30-3:00 in Fields room 210 Magdalena Grzech (Politechnika Krakowska)
    • Friday and Saturday November 9-10. Conference in honour of the 60th Birthday of Professor Andreas R. Blass
    • Friday, November 2, 1:30-3:00pm in Fields Institute room 210 Bernhard Koenig (University of Toronto) Forcing axioms and two cardinal diamonds, Part 2.

    33. JSTOR Approximation Theorems And Model Theoretic Forcing
    THE JOURNAL OF SYMBOLIC LOGIC Volume 41, Number 1, March 1976 APPROXIMATION THEOREMS AND MODEL THEORETIC forcing VICTOR HARNIK* We suggest the name
    http://links.jstor.org/sici?sici=0022-4812(197603)41:1<59:ATAMTF>2.0.CO;2-V

    34. Approximation Theorems And Model Theoretic Forcing
    Approximation Theorems and Model Theoretic forcing. Victor Harnik. Source J. Symbolic Logic Volume 41, Issue 1 (1976), 5972.
    http://projecteuclid.org/handle/euclid.jsl/1183739717
    Log in RSS Title Author(s) Abstract Subject Keyword All Fields FullText more options

    35. Approximation Theorems And Model Theoretic Forcing
    Approximation Theorems and Model Theoretic forcing. Victor Harnik. Journal Title The Journal of Symbolic Logic. Date 1976. Volume 41. Issue 1
    http://wotan.liu.edu/docis/show?doc=dbl/josylo/1976_41_1_59_ATAMTF.htm&query=the

    36. The Journal Of Symbolic Logic, Volume 41
    5058 BibTeX Victor Harnik Approximation Theorems and Model Theoretic forcing. 59-72 BibTeX Zofia Adamowicz One More Aspect of forcing and Omitting
    http://www.informatik.uni-trier.de/~ley/db/journals/jsyml/jsyml41.html
    The Journal of Symbolic Logic , Volume 41
    Volume 41, Number 1, March 1976

    37. RDF-Compatible Model-Theoretic Semantics For OWL
    This Modeltheoretic semantics for OWL is an extension of the semantics defined .. OWL Full augments the common conditions with conditions that force the
    http://www.w3.org/TR/2003/CR-owl-semantics-20030818/rdfs.html
    previous next top contents
    OWL Web Ontology Language
    Semantics and Abstract Syntax
    Section 5. RDF-Compatible Model-Theoretic Semantics
    Editors:
    Peter F. Patel-Schneider , Bell Labs Research, Lucent Technologies
    Patrick Hayes
    , IHMC, University of West Florida
    Ian Horrocks
    , Department of Computer Science, University of Manchester
    MIT ERCIM Keio liability ... document use and software licensing rules apply.
    Contents
    5. RDF-Compatible Model-Theoretic Semantics (Normative)
    This model-theoretic semantics for OWL is an extension of the semantics defined in the RDF semantics [ RDF MT ], and defines the OWL semantic extension of RDF. NOTE : The details of this semantics depends on several post-last-call fixes and other changes to the RDF model theory. Most of these changes are not noticable, but several, including the removal of language tags from typed literals and the changes to datatypes, result in noticable changes.
    5.1. The OWL and RDF universes
    All of the OWL vocabulary is defined on the 'OWL universe', which is a division of part of the RDF universe into three parts, namely OWL individuals, classes, and properties. The class extension of owl:Thing comprises the individuals of the OWL universe. The class extension of

    38. Logical Consequence, Model-Theortic Conceptions [Internet Encyclopedia Of Philos
    A Modeltheoretic conception of logical consequence in language M .. how to use certain words when he defined force in terms of mass and acceleration.
    http://www.iep.utm.edu/l/logcon-m.htm
    Logical Consequence,
    Model-Theortic Conceptions
    One sentence X is said to be a logical consequence of a set of sentences, if and only if, in virtue of logic alone, it is impossible for all the sentences in K to be true without X being true as well. One well-known specification of this informal characterization is the model-theoretic conception of logical consequence: a sentence X is a logical consequence of a set K of sentences if and only if all models of K are models of X. The model-theoretic characterization is a theoretical definition of logical consequence. It has been argued that this conception of logical consequence is more basic than the characterization in terms of deducibility in a deductive system. The correctness of the model-theoretic characterization of logical consequence, and the adequacy of the notion of a logical constant it utilizes are matters of contemporary debate.
    Table of Contents (Clicking on the links below will take you to those parts of this article) 1. Introduction X is a logical consequence of K if and only if all models of K are models of X.

    39. The Mathematics Genealogy Project - Larry Manevitz
    Dissertation Model Theoretic forcing and Absoluteness. Advisor 1 Abraham Robinson Advisor 2 Angus Macintyre. Student(s)
    http://genealogy.math.ndsu.nodak.edu/id.php?id=71685

    40. A Logic For Partially Specified Data Structures
    Istuitionistic Logic and Model Theoretic forcing, NorthHolland, London, 1969. FIT83 M.C. Fitting. Proof Metkod~ or Modal and lntuitionistic Logics,
    http://portal.acm.org/citation.cfm?id=41639

    41. [FOM] Re:Independence Without Forcing
    FOM ReIndependence without forcing Framework/BRT 3/29/00 1258AM 88Boolean Relation Theory 6/8/00 1040AM 89Model Theoretic Interpretations of Set
    http://cs.nyu.edu/pipermail/fom/2003-July/007020.html
    [FOM] Re:Independence without forcing
    Harvey Friedman friedman at math.ohio-state.edu
    Fri Jul 11 12:09:28 EDT 2003 [Davis] Todd Eisworth has asked about independence results in set theory that do not use forcing. Harvey Friedman has found numerous examples, mostly of a combinatorial nature, of propositions that are provable from the existence of large (but not very large) cardinals together with ZFC. http://www.mathpreprints.com/math/Preprint/show/ I've kept up with a tiny amount of Harvey Friedman's work in this area (mostly things about subtle cardinals and linear orderings). I guess the easiest answer to my question would be that ZFC + V=L neither proves nor refutes the existence of an inaccessible cardinal assuming that inaccessible cardinals are consistent with ZFC. I am more interested in the hard version of the question - assuming only CON(ZFC), how might one go about finding a "mathematical" statement P for which both CON(ZFC + V=L + P) and CON(ZFC + V=L + not P) hold? Does anyone

    42. [math/9301208] Forcing Isomorphism
    A forcing extension may create new isomorphisms between two models of a first order theory. Certain model theoretic constraints on the theory and other
    http://arxiv.org/abs/math/9301208
    arXiv.org math
    Search or Article-id Help Advanced search All papers Titles Authors Abstracts Full text Help pages
    Full-text links: Download:
    Citations p revious n ... ext
    Mathematics > Logic
    Title: Forcing isomorphism
    Authors: John T. Baldwin Michael C. Laskowski Saharon Shelah (Submitted on 15 Jan 1993) Abstract: Subjects: Logic (math.LO) Journal reference: J. Symbolic Logic 58 (1993), 12911301 Report number: Shelah [BLSh:464] Cite as: arXiv:math/9301208v1 [math.LO]
    Submission history
    From: Shelah Office [ view email
    Fri, 15 Jan 1993 00:00:00 GMT (23kb)
    Which authors of this paper are endorsers?
    Link back to: arXiv form interface contact

    43. Research Groups DLHFC
    Applications of bounded forcing axioms in infinite combinatorics and Banach space theory. equalityfree first order logic; model theoretic algebra;
    http://www.ub.es/logica/grup/investigacioneseng.htm
    Consolidated Research Groups (DURSI) Group: Research Group in Logic (DURSI, 2005SGR-00738) Renewal: Scientist in charge: Enrique Casanovas Topics: Boolean algebras; model theory: stability and simple theories, model-theoretic algebra, and automorphisms groups; axiomatic set theory: descriptive set theory, forcing, infinitary combinatorics and applications to analysis; foundations of mathematics; philosophy of logic and mathematics. Group: Research Group on Non-classical Logics (DURSI, 2005SGR-00083) Renewal: Scientist in charge: Ramon Jansana Topics: Modal logic, Intuitionistic logic, Substructural logics, Many-valued logics, Algebraic Logic, Abstract Algebraic Logic. Group: LOGOS . Logic Language and Cognition Research Group. (2005 SGR00734) Renewal: Coordinator: Topics: Theory of reference; relations between semantics and pragmatics; non truth-conditional aspects of meaning; vagueness; relativism; knowledge of meaning; mind and language; conceptual aspects of cognitive neuroscience; the nature of conscious experience; theories of truth; the notion of logical consequence; essence and modality; scientific concepts and scientific models; theories of concepts and the a priori; externalism; epistemic justification. European Research Projects Project: Mindreading and the emergence of communication: the case of reference

    44. 361/369 (Total 5522) NO 122 03C70 Logic On
    Translate this page 117, 03C60, Model-theoretic algebra See also 08C10, 12Lxx, 13L05. 116, 03C57, Effective and recursion-theoretic model theory See also 03D45
    http://www.mathnet.or.kr/mathnet/msc_list.php?mode=list&ftype=&fstr=&page=361

    45. RE: ACTION: Task Force Unasserted Triples From Jeremy Carroll On 2002-04-24 (www
    Looking at the model theoretic semantics for Daml+Oil 1 we see a list of . Next in thread Massimo Marchiori RE ACTION task force unasserted
    http://lists.w3.org/Archives/Public/www-webont-wg/2002Apr/0269.html
    W3C home Mailing lists Public www-webont-wg@w3.org ... April 2002
    RE: ACTION: task force unasserted triples
    From
    Date : Wed, 24 Apr 2002 13:08:24 +0100
    To : "Pat Hayes" < phayes@ai.uwf.edu >, "Peter F. Patel-Schneider" < pfps@research.bell-labs.com
    Cc www-webont-wg@w3.org
    Message-ID
    http://www.w3.org/TR/2001/NOTE-daml+oil-model-20011218
    http://lists.w3.org/Archives/Public/www-webont-wg/2002Jan/0099.html Received on Wednesday, 24 April 2002 08:08:42 GMT This archive was generated by hypermail 2.2.0

    Page 1     1-53 of 53    1