Geometry.net Online Store

Geometry.Net - the online learning center
Home  - Mathematical_Logic - Model-theoretic Algebra
  
Images 
Newsgroups
Page 1     1-63 of 63    1 

1. Wesleyan University: Mathematics & Computer Science
Research, Foundations of mathematics, Modeltheoretic algebra. Email, pscowcroft Emeritus faculty and visiting scholars in algebra
http://www.wesleyan.edu/mathcs/people/faculty-by-research.html

About us
Whom to contact and how How to get here
Faculty by name
...
Web site contact
Mathematics and Computer Science Faculty by Research Area
Algebra Analysis Computer Science Discrete Mathematics ... Topology Following the link at the faculty member's name will take you to a page with more detailed information, including research summaries, homepages, classes, etc. (depending on what information the individual faculty member has supplied). E-mail addresses may be constructed by appending "@wesleyan.edu" to the e-mail given for each professor.
Algebra
Wai Kiu Chan
Associate Professor of Mathematics Research: Number theory, quadratic forms Email: wkchan
Karen Collins
Chair, Mathematics and Computer Science Professor of Mathematics Research: Enumerative and Algebraic Combinatorics, Graph Theory Email: kcollins
Mark Hovey
Professor of Mathematics Research: Algebraic topology, homological algebra Email: mhovey
David Pollack
Associate Professor of Mathematics Research: Number theory Email: dpollack
Philip Scowcroft
Professor of Mathematics Research: Foundations of mathematics, model-theoretic algebra

2. Atlas Conferences
Workshop Modeltheoretic algebra and algebraic Models of Computation. September 4-15, 2000. Edinburgh, Scotland. Mathematics
http://atlas-conferences.com/cgi-bin/calendar/d/faba26
Atlas home Conferences Abstracts about Atlas
Workshop: Model-theoretic Algebra and Algebraic Models of Computation
September 4-15, 2000
Edinburgh, Scotland
Mathematics
Host: International Centre for Mathematical Sciences
Homepage: http://www.ma.hw.ac.uk/icms/current/index.html Date received: May 09, 2000 Atlas Conferences Inc.

3. 13: Commutative Rings And Algebras
Most of the papers in commutative rings bearing a classification in 03 Mathematical Logic are in 03C60 Modeltheoretic algebra.
http://www.math.niu.edu/~rusin/known-math/index/13-XX.html
Search Subject Index MathMap Tour ... Help! ABOUT: Introduction History Related areas Subfields
POINTERS: Texts Software Web links Selected topics here
13: Commutative rings and algebras
Introduction
Commutative rings and algebras are sets like the set of integers, allowing addition and (commutative) multiplication. Of particular interest are several classes of rings of interest in number theory, field theory, algebraic geometry, and related areas; however, other classes of rings arise, and a rich structure theory arises to analyze commutative rings in general, using the concepts of ideals, localizations, and homological algebra. A commutative ring is a set endowed with two binary operations "+" and "*" subject to familiar associative, commutative, and distributive laws. (It is usually but not universally assumed that the rings contain an identity element "1" for multiplication.) Examples include the rings of integers in algebraic number fields; here, the interest is number-theoretic: common questions concern factorization and the class group, the action of the Galois group, and the structure of the group of units. A commutative algebra is a commutative ring which contains a field (usually as a subring over which the entire ring is finitely-generated). Examples include coordinate rings of algebraic varieties, that is, quotients of polynomial rings over a field; here, the interest is geometric: how are the local rings different at singular points, and how do subvarieties intersect? In some sense the theory of commutative rings and algebras can be seen as the search for common features of these two classes of examples, and the effort to explain features of a general commutative ring as being like these two types. We can clarify these fields of inquiry by reviewing the subfields of section 13.

4. Universal Algebra And Model-theoretic Algebra
Universal algebra and Modeltheoretic algebra. Universal algebra and Model-theoretic algebra. This interest group has been pursuing research into
http://www.mth.uct.ac.za/otherres/node6.html
Universal algebra and model-theoretic algebra
This interest group has been pursuing research into amalgamation classes of certain lattice varieties, an algebraic approach to large cardinals and varieties of groups of finite exponent with respect to the amalgamation property and absolute retracts.
Differential equations
Postgraduate research in Mathematics
Other Research Interests
Departmental Homepage

5. MODEL-THEORETIC ALGEBRA AND ALGEBRAIC MODELS OF COMPUTATION
EPSRC Reference, GR/M64895/01. Title, Modeltheoretic algebra AND algebraIC MODELS OF COMPUTATION. Principal Investigator, Professor AJ MacIntyre
http://gow.epsrc.ac.uk/ViewGrant.aspx?GrantRef=GR/M64895/01

6. Research Groups DLHFC
Topics, Boolean algebras; model theory stability and simple theories, Modeltheoretic algebra, and automorphisms groups; axiomatic set theory descriptive
http://www.ub.es/logica/grup/investigacioneseng.htm
Consolidated Research Groups (DURSI) Group: Research Group in Logic (DURSI, 2005SGR-00738) Renewal: Scientist in charge: Enrique Casanovas Topics: Boolean algebras; model theory: stability and simple theories, model-theoretic algebra, and automorphisms groups; axiomatic set theory: descriptive set theory, forcing, infinitary combinatorics and applications to analysis; foundations of mathematics; philosophy of logic and mathematics. Group: Research Group on Non-classical Logics (DURSI, 2005SGR-00083) Renewal: Scientist in charge: Ramon Jansana Topics: Modal logic, Intuitionistic logic, Substructural logics, Many-valued logics, Algebraic Logic, Abstract Algebraic Logic. Group: LOGOS . Logic Language and Cognition Research Group. (2005 SGR00734) Renewal: Coordinator: Topics: Theory of reference; relations between semantics and pragmatics; non truth-conditional aspects of meaning; vagueness; relativism; knowledge of meaning; mind and language; conceptual aspects of cognitive neuroscience; the nature of conscious experience; theories of truth; the notion of logical consequence; essence and modality; scientific concepts and scientific models; theories of concepts and the a priori; externalism; epistemic justification. European Research Projects Project: Mindreading and the emergence of communication: the case of reference

7. Theory Of Finite Trees Revisited: Application Of Model-Theoretic Algebra
Theory of Finite Trees Revisited Application of Modeltheoretic algebra. A brief description of the resource . The theory of finite trees in finite
http://nsdl.org/resource/2200/20061011185914119T
Skip to Main Content Skip to Footer Links This resource was selected by the National Science Digital Library. Search for more NSDL resources Return to top of the page View this resource in its own window View more information about this resource This resource is found in the following collection(s). Click on the collection logo for more information. Close this window
Collection Name: CiteSeer.IST: Scientific Literature Digital Library Collection Description: CiteSeer is a scientific literature digital library that aims to improve the dissemination and feedback of scientific literature, and to provide improvements in functionality, usability, availability, cost, comprehensiveness, efficiency, and timeliness. Rather than creating just another digital library, CiteSeer provides algorithms, techniques, and software that can be used in other digital libraries. Subject(s): ResearchIndex; ScienceIndex; CiteSeer; scientific citation index; autonomous citation indexing; scientific literature; computer science
ScienceStudy and teaching (Higher)
Science
Collection Information: Title CiteSeer.IST: Scientific Literature Digital Library

8. Tree Structure Of LoLaLi Concept Hierarchy Updated On 2004624
228 Modeltheoretic algebra . . . . 236 second-order model theory . . . . 230 model of arithmetic . . . . 218 categoricity g . . . . 220 definability .
http://remote.science.uva.nl/~caterina/LoLaLi/soft/ch-data/tree.txt
Tree structure of LoLaLi Concept Hierarchy Updated on 2004:6:24, 13:16 In each line the following information is shown (in order from left to right, [OPT] indicates information that can be missing): Type of relation with the parent concept (see below for the legend) [OPT] Id of the node Name of the node Number of children, in parenthesis [OPT] + if the concept is repeated somehwere [OPT] (see file path.txt for the list of repeated nodes) LEGEND: SbC Subclass Par Part-of Not Notion Res Mathematical results His historical view Ins Instance Uns Unspecified top (4) g . 87 computer science (4) g . . 191 logic (1) (31) + g . . . Par 53 automated reasoning (25) + . . . . 35 belief revision . . . . . 76 update . . . . 67 nonmonotonic reasoning . . . . 63 mathematical induction . . . . 71 rewrite system (3) . . . . . 350 termination . . . . . 348 confluence . . . . . 349 critical pair . . . . 70 resolution (7) + . . . . . 339 purity principle . . . . . 342 simplification . . . . . 337 demodulation . . . . . 338 ordering . . . . . 340 removal of tautologies . . . . . 341 resolution refinement (4) . . . . . . 345 lock resolution . . . . . . 344 hyper resolution . . . . . . 347 theory resolution . . . . . . 346 set of support . . . . . 343 subsumption . . . . 68 paramodulation . . . . Not 72 skolemisation . . . . 65 model checking . . . . 55 clause 55 (2) . . . . . 80 horn clause g . . . . . 79 Gentzen clause . . . . 74 uncertainty . . . . 75 unification + . . . . 57 connection graph procedure . . . . 64 metatheory . . . . 61 literal . . . . 58 connection matrix . . . . 81 clause 81 . . . . . SbC 82 relative clause . . . . 69 reason extraction . . . . 59 deduction (7) + . . . . . Not 109 inconsistency . . . . . 106 consequence g . . . . . SbC 494 labelled deductive system . . . . . 111 rule-based deduction . . . . . Not 108 entailment + . . . . . 110 natural deduction (2) + g . . . . . . Not 482 hypothetical reasoning + . . . . . . Not 483 normalization . . . . . Not 107 consistency + . . . . Res 60 Herbrand's theorem . . . . 56 completion . . . . . 86 Knuth Bendix completion . . . . 73 theorem prover (3) . . . . . 427 Bliksem g . . . . . 428 Boyer-Moore theorem prover . . . . . 429 SPASS g . . . . 66 narrowing . . . . 62 logic programming g . . . . 54 answer extraction . . . . 247 nonmonotonic logic + g . . . . . 248 default inference . . . Par 198 proof theory (22) g . . . . SbC 503 sequent calculus . . . . . Not 484 structural rules . . . . 289 interpretation . . . . 282 constructive analysis . . . . 295 recursive ordinal . . . . 287 Goedel numbering . . . . 288 higher-order arithmetic . . . . 281 complexity of proofs . . . . 294 recursive analysis . . . . Res 292 normal form theorem . . . . 297 second-order arithmetic . . . . SbC 110 natural deduction (2) + g . . . . . Not 482 hypothetical reasoning + . . . . . Not 483 normalization . . . . 290 intuitionistic mathematics . . . . 286 functionals in proof theory . . . . 298 structure of proofs g . . . . 283 constructive system . . . . 291 metamathematics . . . . 59 deduction (7) + . . . . . Not 109 inconsistency . . . . . 106 consequence g . . . . . SbC 494 labelled deductive system . . . . . 111 rule-based deduction . . . . . Not 108 entailment + . . . . . 110 natural deduction (2) + g . . . . . . Not 482 hypothetical reasoning + . . . . . . Not 483 normalization . . . . . Not 107 consistency + . . . . 296 relative consistency . . . . Not 284 cut elimination theorem g . . . . 293 ordinal notation . . . . 285 first-order arithmetic . . . . SbC 485 proof nets . . . SbC 475 first order logic (4) g . . . . 254 quantifier (5) + g . . . . . Not 516 bound variable + g . . . . . His 514 Frege on quantification + g . . . . . Not 517 free variable + g . . . . . His 513 Aristotle on quantification + . . . . . Not 301 scope . . . . . . 351 scoping algorithm . . . . Par 476 first order language g . . . . . Not 477 fragment (3) g . . . . . . SbC 479 finite-variable fragment g . . . . . . SbC 480 guarded fragment g . . . . . . SbC 478 modal fragment g . . . . . . . Not 470 standard translation + g . . . . 511 SPASS g . . . . Par 515 quantification (4) + . . . . . Not 516 bound variable + g . . . . . His 514 Frege on quantification + g . . . . . Not 517 free variable + g . . . . . His 513 Aristotle on quantification + . . . 193 computability theory . . . SbC 167 temporal logic (2) + g . . . 435 type theory (2) + . . . . 433 type . . . . . 434 type shifting . . . . Not 23 polymorphism + g . . . 495 substructural logic . . . SbC 200 relevance logic + . . . . 108 entailment + . . . Res 180 Lindstroem's theorem + . . . SbC 481 linear logic . . . 526 variable g . . . . SbC 517 free variable + g . . . Res 179 Goedel's 1st incompleteness theorem (1931) + g . . . SbC 125 feature logic + . . . . 75 unification + . . . 197 model theory (29) . . . . 237 set-theoretic model theory . . . . 11 universal algebra + . . . . 225 infinitary logic . . . . 217 admissible set . . . . 234 recursion-theoretic model theory . . . . 239 ultraproduct . . . . 227 logic with extra quantifiers . . . . SbC 457 modal model theory (7) + . . . . . SbC 215 Kripke semantics + g . . . . . . Not 489 accessability relation + . . . . . Not 461 generated submodel g . . . . . 462 model (4) + . . . . . . SbC 464 finite model g . . . . . . SbC 466 image finite model . . . . . . . Res 467 Hennessy-Milner theorem g . . . . . . Par 463 valuation g . . . . . . SbC 465 tree model g . . . . . Not 459 disjoint union of models g . . . . . 455 homomorphism (2) + g . . . . . . SbC 456 bounded homomorphism g . . . . . . SbC 468 bounded morphism . . . . . Not 469 expressive power g . . . . . . Not 470 standard translation + g . . . . . Not 460 bisimulation g . . . . 219 completeness of theories . . . . 235 saturation . . . . 222 equational class . . . . 238 stability . . . . 233 quantifier elimination . . . . 221 denumerable structure . . . . 228 model-theoretic algebra . . . . 236 second-order model theory . . . . 230 model of arithmetic . . . . 218 categoricity g . . . . 220 definability . . . . 226 interpolation . . . . SbC 454 first order model theory . . . . . 455 homomorphism (2) + g . . . . . . SbC 456 bounded homomorphism g . . . . . . SbC 468 bounded morphism . . . . 231 nonclassical model (2) . . . . . 246 sheaf model . . . . . 245 boolean valued . . . . 201 set theory (24) + g . . . . . 398 set-theoretic definability . . . . . Not 391 iota operator . . . . . 384 determinacy . . . . . 387 fuzzy relation . . . . . Not 385 filter . . . . . 389 generalized continuum hypothesis . . . . . 386 function (3) g . . . . . . 482 hypothetical reasoning + . . . . . . 509 functional application . . . . . . 508 functional composition . . . . . Not 394 ordinal definability . . . . . Not 107 consistency + . . . . . 397 set algebra . . . . . 399 Suslin scheme . . . . . SbC 383 descriptive set theory g . . . . . 388 fuzzy set g . . . . . 378 borel classification g . . . . . SbC 380 combinatorial set theory . . . . . Not 390 independence . . . . . 381 constructibility . . . . . 396 relation g . . . . . 377 axiom of choice g . . . . . 392 large cardinal . . . . . Not 395 ordinal number . . . . . 393 Martin's axiom . . . . . 382 continuum hypothesis g . . . . . Not 379 cardinal number . . . . 232 preservation . . . . 216 abstract model theory + . . . . . 254 quantifier (5) + g . . . . . . Not 516 bound variable + g . . . . . . His 514 Frege on quantification + g . . . . . . Not 517 free variable + g . . . . . . His 513 Aristotle on quantification + . . . . . . Not 301 scope . . . . . . . 351 scoping algorithm . . . . 229 model-theoretic forcing . . . . 224 higher-order model theory . . . . Par 493 correspondence theory . . . . 223 finite structure . . . Res 182 Loewenheim-Skolem-Tarski theorem + . . . Not 83 completeness (2) + g . . . . SbC 84 axiomatic completeness . . . . SbC 85 functional completeness + . . . SbC 156 modal logic (13) + g . . . . Ins 512 S4 . . . . 488 modes . . . . 486 frame (2) . . . . . SbC 487 frame constraints . . . . Par 210 modal operator (2) + g . . . . . SbC 472 diamond g . . . . . SbC 473 box g . . . . SbC 213 doxastic logic g . . . . Not 489 accessability relation + . . . . Par 471 modal language (2) g . . . . . Par 210 modal operator (2) + g . . . . . . SbC 472 diamond g . . . . . . SbC 473 box g . . . . . 490 boolean operators . . . . SbC 211 alethic logic g . . . . SbC 212 deontic logic (3) g . . . . . SbC 521 standard deontic logic g . . . . . SbC 523 two-sorted deontic logic g . . . . . SbC 522 dyadic deontic logic g . . . . Par 215 Kripke semantics + g . . . . . Not 489 accessability relation + . . . . Par 457 modal model theory (7) + . . . . . SbC 215 Kripke semantics + g . . . . . . Not 489 accessability relation + . . . . . Not 461 generated submodel g . . . . . 462 model (4) + . . . . . . SbC 464 finite model g . . . . . . SbC 466 image finite model . . . . . . . Res 467 Hennessy-Milner theorem g . . . . . . Par 463 valuation g . . . . . . SbC 465 tree model g . . . . . Not 459 disjoint union of models g . . . . . 455 homomorphism (2) + g . . . . . . SbC 456 bounded homomorphism g . . . . . . SbC 468 bounded morphism . . . . . Not 469 expressive power g . . . . . . Not 470 standard translation + g . . . . . Not 460 bisimulation g . . . . SbC 214 epistemic logic g . . . . Not 462 model (4) + . . . . . SbC 464 finite model g . . . . . SbC 466 image finite model . . . . . . Res 467 Hennessy-Milner theorem g . . . . . Par 463 valuation g . . . . . SbC 465 tree model g . . . 194 computational logic (2) . . . Not 183 operator (4) + g . . . . 254 quantifier (5) + g . . . . . Not 516 bound variable + g . . . . . His 514 Frege on quantification + g . . . . . Not 517 free variable + g . . . . . His 513 Aristotle on quantification + . . . . . Not 301 scope . . . . . . 351 scoping algorithm . . . . SbC 210 modal operator (2) + g . . . . . SbC 472 diamond g . . . . . SbC 473 box g . . . . 518 truth-funcional operator (2) g . . . . . SbC 252 iff g . . . . . SbC 253 negation . . . . Not 525 arity g . . . SbC 192 combinatory logic g . . . Par 199 recursive function theory . . . 361 formal semantics (10) + g . . . . 365 property theory . . . . 240 Montague grammar (4) . . . . . 243 sense 243 (4) g . . . . . . 203 meaning relation (5) . . . . . . . 205 hyponymy g . . . . . . . 204 antonymy g . . . . . . . 207 synonymy g . . . . . . . . 149 intensional isomorphism + . . . . . . . 206 paraphrase g . . . . . . . 108 entailment + . . . . . . 375 metaphor g . . . . . . 376 metonymy g . . . . . . 374 literal meaning . . . . . 244 sense 244 g . . . . . 241 meaning postulate . . . . . 242 ptq g . . . . . . 300 quantifying in . . . . 254 quantifier (5) + g . . . . . Not 516 bound variable + g . . . . . His 514 Frege on quantification + g . . . . . Not 517 free variable + g . . . . . His 513 Aristotle on quantification + . . . . . Not 301 scope . . . . . . 351 scoping algorithm . . . . 353 truth (4) + . . . . . 431 truth definition g . . . . . 432 truth value . . . . . 372 truth function + g . . . . . 430 truth condition . . . . 362 dynamic semantics . . . . 363 lexical semantics . . . . 366 situation semantics (2) g . . . . . 402 partiality . . . . . 400 situation . . . . . . 401 scene . . . . Not 507 compositionality . . . . 364 natural logic + . . . . Par 515 quantification (4) + . . . . . Not 516 bound variable + g . . . . . His 514 Frege on quantification + g . . . . . Not 517 free variable + g . . . . . His 513 Aristotle on quantification + . . . SbC 168 lambda calculus (4) g . . . . 170 application . . . . 172 lambda operator . . . . 169 abstraction . . . . 171 conversion . . . 38 knowledge representation (20) + g . . . . 152 frame (1) . . . . 104 database + g . . . . . 105 query g . . . . 165 situation calculus . . . . 167 temporal logic (2) + g . . . . 166 temporal logic (1) g . . . . 93 concept formation . . . . . 90 concept + . . . . . . 91 individual concept . . . . 154 logical omniscience . . . . 162 rule-based representation . . . . 157 predicate logic + g . . . . 159 procedural representation . . . . 161 representation language . . . . 156 modal logic (13) + g . . . . . Ins 512 S4 . . . . . 488 modes . . . . . 486 frame (2) . . . . . . SbC 487 frame constraints . . . . . Par 210 modal operator (2) + g . . . . . . SbC 472 diamond g . . . . . . SbC 473 box g . . . . . SbC 213 doxastic logic g . . . . . Not 489 accessability relation + . . . . . Par 471 modal language (2) g . . . . . . Par 210 modal operator (2) + g . . . . . . . SbC 472 diamond g . . . . . . . SbC 473 box g . . . . . . 490 boolean operators . . . . . SbC 211 alethic logic g . . . . . SbC 212 deontic logic (3) g . . . . . . SbC 521 standard deontic logic g . . . . . . SbC 523 two-sorted deontic logic g . . . . . . SbC 522 dyadic deontic logic g . . . . . Par 215 Kripke semantics + g . . . . . . Not 489 accessability relation + . . . . . Par 457 modal model theory (7) + . . . . . . SbC 215 Kripke semantics + g . . . . . . . Not 489 accessability relation + . . . . . . Not 461 generated submodel g . . . . . . 462 model (4) + . . . . . . . SbC 464 finite model g . . . . . . . SbC 466 image finite model . . . . . . . . Res 467 Hennessy-Milner theorem g . . . . . . . Par 463 valuation g . . . . . . . SbC 465 tree model g . . . . . . Not 459 disjoint union of models g . . . . . . 455 homomorphism (2) + g . . . . . . . SbC 456 bounded homomorphism g . . . . . . . SbC 468 bounded morphism . . . . . . Not 469 expressive power g . . . . . . . Not 470 standard translation + g . . . . . . Not 460 bisimulation g . . . . . SbC 214 epistemic logic g . . . . . Not 462 model (4) + . . . . . . SbC 464 finite model g . . . . . . SbC 466 image finite model . . . . . . . Res 467 Hennessy-Milner theorem g . . . . . . Par 463 valuation g . . . . . . SbC 465 tree model g . . . . 97 context (2) . . . . . 99 context dependence . . . . . 98 context change . . . . 160 relation system . . . . 153 frame problem g . . . . 92 concept analysis . . . . . 90 concept + . . . . . . 91 individual concept . . . . 163 script . . . . 145 idea g . . . . . 90 concept + . . . . . . 91 individual concept . . . . 164 semantic network g . . . . 247 nonmonotonic logic + g . . . . . 248 default inference . . . Par 367 semantics 367 (8) g . . . . 371 truth conditional semantics . . . . 373 truth table . . . . SbC 215 Kripke semantics + g . . . . . Not 489 accessability relation + . . . . 85 functional completeness + . . . . 370 satisfaction . . . . 369 material implication g . . . . 368 assignment . . . . Not 372 truth function + g . . . Par 201 set theory (24) + g . . . . 398 set-theoretic definability . . . . Not 391 iota operator . . . . 384 determinacy . . . . 387 fuzzy relation . . . . Not 385 filter . . . . 389 generalized continuum hypothesis . . . . 386 function (3) g . . . . . 482 hypothetical reasoning + . . . . . 509 functional application . . . . . 508 functional composition . . . . Not 394 ordinal definability . . . . Not 107 consistency + . . . . 397 set algebra . . . . 399 Suslin scheme . . . . SbC 383 descriptive set theory g . . . . 388 fuzzy set g . . . . 378 borel classification g . . . . SbC 380 combinatorial set theory . . . . Not 390 independence . . . . 381 constructibility . . . . 396 relation g . . . . 377 axiom of choice g . . . . 392 large cardinal . . . . Not 395 ordinal number . . . . 393 Martin's axiom . . . . 382 continuum hypothesis g . . . . Not 379 cardinal number . . . Par 216 abstract model theory + . . . . 254 quantifier (5) + g . . . . . Not 516 bound variable + g . . . . . His 514 Frege on quantification + g . . . . . Not 517 free variable + g . . . . . His 513 Aristotle on quantification + . . . . . Not 301 scope . . . . . . 351 scoping algorithm . . . 178 compactness + . . . His 177 aristotelean logic (2) + g . . . . Par 39 syllogism g . . . . Par 513 Aristotle on quantification + . . . Par 196 foundations of theories . . . 195 constraint programming . . Not 88 software (2) . . . 104 database + g . . . . 105 query g . . . 275 programming language (3) . . . . 190 semantics 190 (8) + g . . . . . 356 denotational semantics . . . . . 119 domain theory g . . . . . . 120 domain . . . . . 360 program analysis . . . . . 359 process model . . . . . SbC 215 Kripke semantics + g . . . . . . Not 489 accessability relation + . . . . . 357 operational semantics . . . . . 358 partial evaluation . . . . . 355 algebraic semantics . . . . 276 syntax 276 . . . . 277 prolog g . . . . . 70 resolution (7) + . . . . . . 339 purity principle . . . . . . 342 simplification . . . . . . 337 demodulation . . . . . . 338 ordering . . . . . . 340 removal of tautologies . . . . . . 341 resolution refinement (4) . . . . . . . 345 lock resolution . . . . . . . 344 hyper resolution . . . . . . . 347 theory resolution . . . . . . . 346 set of support . . . . . . 343 subsumption . . Par 34 artificial intelligence (5) g . . . Par 38 knowledge representation (20) + g . . . . 152 frame (1) . . . . 104 database + g . . . . . 105 query g . . . . 165 situation calculus . . . . 167 temporal logic (2) + g . . . . 166 temporal logic (1) g . . . . 93 concept formation . . . . . 90 concept + . . . . . . 91 individual concept . . . . 154 logical omniscience . . . . 162 rule-based representation . . . . 157 predicate logic + g . . . . 159 procedural representation . . . . 161 representation language . . . . 156 modal logic (13) + g . . . . . Ins 512 S4 . . . . . 488 modes . . . . . 486 frame (2) . . . . . . SbC 487 frame constraints . . . . . Par 210 modal operator (2) + g . . . . . . SbC 472 diamond g . . . . . . SbC 473 box g . . . . . SbC 213 doxastic logic g . . . . . Not 489 accessability relation + . . . . . Par 471 modal language (2) g . . . . . . Par 210 modal operator (2) + g . . . . . . . SbC 472 diamond g . . . . . . . SbC 473 box g . . . . . . 490 boolean operators . . . . . SbC 211 alethic logic g . . . . . SbC 212 deontic logic (3) g . . . . . . SbC 521 standard deontic logic g . . . . . . SbC 523 two-sorted deontic logic g . . . . . . SbC 522 dyadic deontic logic g . . . . . Par 215 Kripke semantics + g . . . . . . Not 489 accessability relation + . . . . . Par 457 modal model theory (7) + . . . . . . SbC 215 Kripke semantics + g . . . . . . . Not 489 accessability relation + . . . . . . Not 461 generated submodel g . . . . . . 462 model (4) + . . . . . . . SbC 464 finite model g . . . . . . . SbC 466 image finite model . . . . . . . . Res 467 Hennessy-Milner theorem g . . . . . . . Par 463 valuation g . . . . . . . SbC 465 tree model g . . . . . . Not 459 disjoint union of models g . . . . . . 455 homomorphism (2) + g . . . . . . . SbC 456 bounded homomorphism g . . . . . . . SbC 468 bounded morphism . . . . . . Not 469 expressive power g . . . . . . . Not 470 standard translation + g . . . . . . Not 460 bisimulation g . . . . . SbC 214 epistemic logic g . . . . . Not 462 model (4) + . . . . . . SbC 464 finite model g . . . . . . SbC 466 image finite model . . . . . . . Res 467 Hennessy-Milner theorem g . . . . . . Par 463 valuation g . . . . . . SbC 465 tree model g . . . . 97 context (2) . . . . . 99 context dependence . . . . . 98 context change . . . . 160 relation system . . . . 153 frame problem g . . . . 92 concept analysis . . . . . 90 concept + . . . . . . 91 individual concept . . . . 163 script . . . . 145 idea g . . . . . 90 concept + . . . . . . 91 individual concept . . . . 164 semantic network g . . . . 247 nonmonotonic logic + g . . . . . 248 default inference . . . 191 logic (1) (31) + g . . . . Par 53 automated reasoning (25) + . . . . . 35 belief revision . . . . . . 76 update . . . . . 67 nonmonotonic reasoning . . . . . 63 mathematical induction . . . . . 71 rewrite system (3) . . . . . . 350 termination . . . . . . 348 confluence . . . . . . 349 critical pair . . . . . 70 resolution (7) + . . . . . . 339 purity principle . . . . . . 342 simplification . . . . . . 337 demodulation . . . . . . 338 ordering . . . . . . 340 removal of tautologies . . . . . . 341 resolution refinement (4) . . . . . . . 345 lock resolution . . . . . . . 344 hyper resolution . . . . . . . 347 theory resolution . . . . . . . 346 set of support . . . . . . 343 subsumption . . . . . 68 paramodulation . . . . . Not 72 skolemisation . . . . . 65 model checking . . . . . 55 clause 55 (2) . . . . . . 80 horn clause g . . . . . . 79 Gentzen clause . . . . . 74 uncertainty . . . . . 75 unification + . . . . . 57 connection graph procedure . . . . . 64 metatheory . . . . . 61 literal . . . . . 58 connection matrix . . . . . 81 clause 81 . . . . . . SbC 82 relative clause . . . . . 69 reason extraction . . . . . 59 deduction (7) + . . . . . . Not 109 inconsistency . . . . . . 106 consequence g . . . . . . SbC 494 labelled deductive system . . . . . . 111 rule-based deduction . . . . . . Not 108 entailment + . . . . . . 110 natural deduction (2) + g . . . . . . . Not 482 hypothetical reasoning + . . . . . . . Not 483 normalization . . . . . . Not 107 consistency + . . . . . Res 60 Herbrand's theorem . . . . . 56 completion . . . . . . 86 Knuth Bendix completion . . . . . 73 theorem prover (3) . . . . . . 427 Bliksem g . . . . . . 428 Boyer-Moore theorem prover . . . . . . 429 SPASS g . . . . . 66 narrowing . . . . . 62 logic programming g . . . . . 54 answer extraction . . . . . 247 nonmonotonic logic + g . . . . . . 248 default inference . . . . Par 198 proof theory (22) g . . . . . SbC 503 sequent calculus . . . . . . Not 484 structural rules . . . . . 289 interpretation . . . . . 282 constructive analysis . . . . . 295 recursive ordinal . . . . . 287 Goedel numbering . . . . . 288 higher-order arithmetic . . . . . 281 complexity of proofs . . . . . 294 recursive analysis . . . . . Res 292 normal form theorem . . . . . 297 second-order arithmetic . . . . . SbC 110 natural deduction (2) + g . . . . . . Not 482 hypothetical reasoning + . . . . . . Not 483 normalization . . . . . 290 intuitionistic mathematics . . . . . 286 functionals in proof theory . . . . . 298 structure of proofs g . . . . . 283 constructive system . . . . . 291 metamathematics . . . . . 59 deduction (7) + . . . . . . Not 109 inconsistency . . . . . . 106 consequence g . . . . . . SbC 494 labelled deductive system . . . . . . 111 rule-based deduction . . . . . . Not 108 entailment + . . . . . . 110 natural deduction (2) + g . . . . . . . Not 482 hypothetical reasoning + . . . . . . . Not 483 normalization . . . . . . Not 107 consistency + . . . . . 296 relative consistency . . . . . Not 284 cut elimination theorem g . . . . . 293 ordinal notation . . . . . 285 first-order arithmetic . . . . . SbC 485 proof nets . . . . SbC 475 first order logic (4) g . . . . . 254 quantifier (5) + g . . . . . . Not 516 bound variable + g . . . . . . His 514 Frege on quantification + g . . . . . . Not 517 free variable + g . . . . . . His 513 Aristotle on quantification + . . . . . . Not 301 scope . . . . . . . 351 scoping algorithm . . . . . Par 476 first order language g . . . . . . Not 477 fragment (3) g . . . . . . . SbC 479 finite-variable fragment g . . . . . . . SbC 480 guarded fragment g . . . . . . . SbC 478 modal fragment g . . . . . . . . Not 470 standard translation + g . . . . . 511 SPASS g . . . . . Par 515 quantification (4) + . . . . . . Not 516 bound variable + g . . . . . . His 514 Frege on quantification + g . . . . . . Not 517 free variable + g . . . . . . His 513 Aristotle on quantification + . . . . 193 computability theory . . . . SbC 167 temporal logic (2) + g . . . . 435 type theory (2) + . . . . . 433 type . . . . . . 434 type shifting . . . . . Not 23 polymorphism + g . . . . 495 substructural logic . . . . SbC 200 relevance logic + . . . . . 108 entailment + . . . . Res 180 Lindstroem's theorem + . . . . SbC 481 linear logic . . . . 526 variable g . . . . . SbC 517 free variable + g . . . . Res 179 Goedel's 1st incompleteness theorem (1931) + g . . . . SbC 125 feature logic + . . . . . 75 unification + . . . . 197 model theory (29) . . . . . 237 set-theoretic model theory . . . . . 11 universal algebra + . . . . . 225 infinitary logic . . . . . 217 admissible set . . . . . 234 recursion-theoretic model theory . . . . . 239 ultraproduct . . . . . 227 logic with extra quantifiers . . . . . SbC 457 modal model theory (7) + . . . . . . SbC 215 Kripke semantics + g . . . . . . . Not 489 accessability relation + . . . . . . Not 461 generated submodel g . . . . . . 462 model (4) + . . . . . . . SbC 464 finite model g . . . . . . . SbC 466 image finite model . . . . . . . . Res 467 Hennessy-Milner theorem g . . . . . . . Par 463 valuation g . . . . . . . SbC 465 tree model g . . . . . . Not 459 disjoint union of models g . . . . . . 455 homomorphism (2) + g . . . . . . . SbC 456 bounded homomorphism g . . . . . . . SbC 468 bounded morphism . . . . . . Not 469 expressive power g . . . . . . . Not 470 standard translation + g . . . . . . Not 460 bisimulation g . . . . . 219 completeness of theories . . . . . 235 saturation . . . . . 222 equational class . . . . . 238 stability . . . . . 233 quantifier elimination . . . . . 221 denumerable structure . . . . . 228 model-theoretic algebra . . . . . 236 second-order model theory . . . . . 230 model of arithmetic . . . . . 218 categoricity g . . . . . 220 definability . . . . . 226 interpolation . . . . . SbC 454 first order model theory . . . . . . 455 homomorphism (2) + g . . . . . . . SbC 456 bounded homomorphism g . . . . . . . SbC 468 bounded morphism . . . . . 231 nonclassical model (2) . . . . . . 246 sheaf model . . . . . . 245 boolean valued . . . . . 201 set theory (24) + g . . . . . . 398 set-theoretic definability . . . . . . Not 391 iota operator . . . . . . 384 determinacy . . . . . . 387 fuzzy relation . . . . . . Not 385 filter . . . . . . 389 generalized continuum hypothesis . . . . . . 386 function (3) g . . . . . . . 482 hypothetical reasoning + . . . . . . . 509 functional application . . . . . . . 508 functional composition . . . . . . Not 394 ordinal definability . . . . . . Not 107 consistency + . . . . . . 397 set algebra . . . . . . 399 Suslin scheme . . . . . . SbC 383 descriptive set theory g . . . . . . 388 fuzzy set g . . . . . . 378 borel classification g . . . . . . SbC 380 combinatorial set theory . . . . . . Not 390 independence . . . . . . 381 constructibility . . . . . . 396 relation g . . . . . . 377 axiom of choice g . . . . . . 392 large cardinal . . . . . . Not 395 ordinal number . . . . . . 393 Martin's axiom . . . . . . 382 continuum hypothesis g . . . . . . Not 379 cardinal number . . . . . 232 preservation . . . . . 216 abstract model theory + . . . . . . 254 quantifier (5) + g . . . . . . . Not 516 bound variable + g . . . . . . . His 514 Frege on quantification + g . . . . . . . Not 517 free variable + g . . . . . . . His 513 Aristotle on quantification + . . . . . . . Not 301 scope . . . . . . . . 351 scoping algorithm . . . . . 229 model-theoretic forcing . . . . . 224 higher-order model theory . . . . . Par 493 correspondence theory . . . . . 223 finite structure . . . . Res 182 Loewenheim-Skolem-Tarski theorem + . . . . Not 83 completeness (2) + g . . . . . SbC 84 axiomatic completeness . . . . . SbC 85 functional completeness + . . . . SbC 156 modal logic (13) + g . . . . . Ins 512 S4 . . . . . 488 modes . . . . . 486 frame (2) . . . . . . SbC 487 frame constraints . . . . . Par 210 modal operator (2) + g . . . . . . SbC 472 diamond g . . . . . . SbC 473 box g . . . . . SbC 213 doxastic logic g . . . . . Not 489 accessability relation + . . . . . Par 471 modal language (2) g . . . . . . Par 210 modal operator (2) + g . . . . . . . SbC 472 diamond g . . . . . . . SbC 473 box g . . . . . . 490 boolean operators . . . . . SbC 211 alethic logic g . . . . . SbC 212 deontic logic (3) g . . . . . . SbC 521 standard deontic logic g . . . . . . SbC 523 two-sorted deontic logic g . . . . . . SbC 522 dyadic deontic logic g . . . . . Par 215 Kripke semantics + g . . . . . . Not 489 accessability relation + . . . . . Par 457 modal model theory (7) + . . . . . . SbC 215 Kripke semantics + g . . . . . . . Not 489 accessability relation + . . . . . . Not 461 generated submodel g . . . . . . 462 model (4) + . . . . . . . SbC 464 finite model g . . . . . . . SbC 466 image finite model . . . . . . . . Res 467 Hennessy-Milner theorem g . . . . . . . Par 463 valuation g . . . . . . . SbC 465 tree model g . . . . . . Not 459 disjoint union of models g . . . . . . 455 homomorphism (2) + g . . . . . . . SbC 456 bounded homomorphism g . . . . . . . SbC 468 bounded morphism . . . . . . Not 469 expressive power g . . . . . . . Not 470 standard translation + g . . . . . . Not 460 bisimulation g . . . . . SbC 214 epistemic logic g . . . . . Not 462 model (4) + . . . . . . SbC 464 finite model g . . . . . . SbC 466 image finite model . . . . . . . Res 467 Hennessy-Milner theorem g . . . . . . Par 463 valuation g . . . . . . SbC 465 tree model g . . . . 194 computational logic (2) . . . . Not 183 operator (4) + g . . . . . 254 quantifier (5) + g . . . . . . Not 516 bound variable + g . . . . . . His 514 Frege on quantification + g . . . . . . Not 517 free variable + g . . . . . . His 513 Aristotle on quantification + . . . . . . Not 301 scope . . . . . . . 351 scoping algorithm . . . . . SbC 210 modal operator (2) + g . . . . . . SbC 472 diamond g . . . . . . SbC 473 box g . . . . . 518 truth-funcional operator (2) g . . . . . . SbC 252 iff g . . . . . . SbC 253 negation . . . . . Not 525 arity g . . . . SbC 192 combinatory logic g . . . . Par 199 recursive function theory . . . . 361 formal semantics (10) + g . . . . . 365 property theory . . . . . 240 Montague grammar (4) . . . . . . 243 sense 243 (4) g . . . . . . . 203 meaning relation (5) . . . . . . . . 205 hyponymy g . . . . . . . . 204 antonymy g . . . . . . . . 207 synonymy g . . . . . . . . . 149 intensional isomorphism + . . . . . . . . 206 paraphrase g . . . . . . . . 108 entailment + . . . . . . . 375 metaphor g . . . . . . . 376 metonymy g . . . . . . . 374 literal meaning . . . . . . 244 sense 244 g . . . . . . 241 meaning postulate . . . . . . 242 ptq g . . . . . . . 300 quantifying in . . . . . 254 quantifier (5) + g . . . . . . Not 516 bound variable + g . . . . . . His 514 Frege on quantification + g . . . . . . Not 517 free variable + g . . . . . . His 513 Aristotle on quantification + . . . . . . Not 301 scope . . . . . . . 351 scoping algorithm . . . . . 353 truth (4) + . . . . . . 431 truth definition g . . . . . . 432 truth value . . . . . . 372 truth function + g . . . . . . 430 truth condition . . . . . 362 dynamic semantics . . . . . 363 lexical semantics . . . . . 366 situation semantics (2) g . . . . . . 402 partiality . . . . . . 400 situation . . . . . . . 401 scene . . . . . Not 507 compositionality . . . . . 364 natural logic + . . . . . Par 515 quantification (4) + . . . . . . Not 516 bound variable + g . . . . . . His 514 Frege on quantification + g . . . . . . Not 517 free variable + g . . . . . . His 513 Aristotle on quantification + . . . . SbC 168 lambda calculus (4) g . . . . . 170 application . . . . . 172 lambda operator . . . . . 169 abstraction . . . . . 171 conversion . . . . 38 knowledge representation (20) + g . . . . . 152 frame (1) . . . . . 104 database + g . . . . . . 105 query g . . . . . 165 situation calculus . . . . . 167 temporal logic (2) + g . . . . . 166 temporal logic (1) g . . . . . 93 concept formation . . . . . . 90 concept + . . . . . . . 91 individual concept . . . . . 154 logical omniscience . . . . . 162 rule-based representation . . . . . 157 predicate logic + g . . . . . 159 procedural representation . . . . . 161 representation language . . . . . 156 modal logic (13) + g . . . . . . Ins 512 S4 . . . . . . 488 modes . . . . . . 486 frame (2) . . . . . . . SbC 487 frame constraints . . . . . . Par 210 modal operator (2) + g . . . . . . . SbC 472 diamond g . . . . . . . SbC 473 box g . . . . . . SbC 213 doxastic logic g . . . . . . Not 489 accessability relation + . . . . . . Par 471 modal language (2) g . . . . . . . Par 210 modal operator (2) + g . . . . . . . . SbC 472 diamond g . . . . . . . . SbC 473 box g . . . . . . . 490 boolean operators . . . . . . SbC 211 alethic logic g . . . . . . SbC 212 deontic logic (3) g . . . . . . . SbC 521 standard deontic logic g . . . . . . . SbC 523 two-sorted deontic logic g . . . . . . . SbC 522 dyadic deontic logic g . . . . . . Par 215 Kripke semantics + g . . . . . . . Not 489 accessability relation + . . . . . . Par 457 modal model theory (7) + . . . . . . . SbC 215 Kripke semantics + g . . . . . . . . Not 489 accessability relation + . . . . . . . Not 461 generated submodel g . . . . . . . 462 model (4) + . . . . . . . . SbC 464 finite model g . . . . . . . . SbC 466 image finite model . . . . . . . . . Res 467 Hennessy-Milner theorem g . . . . . . . . Par 463 valuation g . . . . . . . . SbC 465 tree model g . . . . . . . Not 459 disjoint union of models g . . . . . . . 455 homomorphism (2) + g . . . . . . . . SbC 456 bounded homomorphism g . . . . . . . . SbC 468 bounded morphism . . . . . . . Not 469 expressive power g . . . . . . . . Not 470 standard translation + g . . . . . . . Not 460 bisimulation g . . . . . . SbC 214 epistemic logic g . . . . . . Not 462 model (4) + . . . . . . . SbC 464 finite model g . . . . . . . SbC 466 image finite model . . . . . . . . Res 467 Hennessy-Milner theorem g . . . . . . . Par 463 valuation g . . . . . . . SbC 465 tree model g . . . . . 97 context (2) . . . . . . 99 context dependence . . . . . . 98 context change . . . . . 160 relation system . . . . . 153 frame problem g . . . . . 92 concept analysis . . . . . . 90 concept + . . . . . . . 91 individual concept . . . . . 163 script . . . . . 145 idea g . . . . . . 90 concept + . . . . . . . 91 individual concept . . . . . 164 semantic network g . . . . . 247 nonmonotonic logic + g . . . . . . 248 default inference . . . . Par 367 semantics 367 (8) g . . . . . 371 truth conditional semantics . . . . . 373 truth table . . . . . SbC 215 Kripke semantics + g . . . . . . Not 489 accessability relation + . . . . . 85 functional completeness + . . . . . 370 satisfaction . . . . . 369 material implication g . . . . . 368 assignment . . . . . Not 372 truth function + g . . . . Par 201 set theory (24) + g . . . . . 398 set-theoretic definability . . . . . Not 391 iota operator . . . . . 384 determinacy . . . . . 387 fuzzy relation . . . . . Not 385 filter . . . . . 389 generalized continuum hypothesis . . . . . 386 function (3) g . . . . . . 482 hypothetical reasoning + . . . . . . 509 functional application . . . . . . 508 functional composition . . . . . Not 394 ordinal definability . . . . . Not 107 consistency + . . . . . 397 set algebra . . . . . 399 Suslin scheme . . . . . SbC 383 descriptive set theory g . . . . . 388 fuzzy set g . . . . . 378 borel classification g . . . . . SbC 380 combinatorial set theory . . . . . Not 390 independence . . . . . 381 constructibility . . . . . 396 relation g . . . . . 377 axiom of choice g . . . . . 392 large cardinal . . . . . Not 395 ordinal number . . . . . 393 Martin's axiom . . . . . 382 continuum hypothesis g . . . . . Not 379 cardinal number . . . . Par 216 abstract model theory + . . . . . 254 quantifier (5) + g . . . . . . Not 516 bound variable + g . . . . . . His 514 Frege on quantification + g . . . . . . Not 517 free variable + g . . . . . . His 513 Aristotle on quantification + . . . . . . Not 301 scope . . . . . . . 351 scoping algorithm . . . . 178 compactness + . . . . His 177 aristotelean logic (2) + g . . . . . Par 39 syllogism g . . . . . Par 513 Aristotle on quantification + . . . . Par 196 foundations of theories . . . . 195 constraint programming . . . 40 planning . . . Not 36 classification . . . Not 37 heuristic g . . Par 89 theory of computation (4) g . . . Par 127 formal language theory (10) g . . . . 128 categorial grammar + . . . . . SbC 528 combinatorial categorial grammar . . . . 131 context free language g . . . . 130 Chomsky hierarchy g . . . . 134 phrase structure grammar . . . . 129 category . . . . 135 recursive language + g . . . . 137 unrestricted language g . . . . 136 regular language . . . . 132 context sensitive language g . . . . 133 feature constraint . . . Par 302 recursion theory (31) g . . . . 306 complexity of computation . . . . 330 undecidability . . . . 328 theory of numerations . . . . 309 effectively presented structure . . . . 314 isol . . . . 307 decidability (2) g . . . . . 474 tree model property g . . . . . 504 subformula property . . . . 322 recursively enumerable degree . . . . 331 word problem . . . . 327 subrecursive hierarchy . . . . 315 post system . . . . 324 recursively enumerable set . . . . 320 recursive function . . . . 318 recursive axiomatizability . . . . 329 thue system . . . . 325 reducibility . . . . 304 automaton . . . . 310 formal grammar . . . . 326 set recursion theory . . . . 303 abstract recursion theory . . . . 323 recursively enumerable language . . . . 305 axiomatic recursion theory . . . . 135 recursive language + g . . . . 313 inductive definability . . . . 316 recursion theory on admissible sets . . . . Not 52 Turing machine + . . . . 308 degrees of sets of sentences . . . . 319 recursive equivalence type . . . . 312 higher type recursion theory . . . . 317 recursion theory on ordinals . . . . 321 recursive relation . . . . 311 hierarchy . . . Par 185 computational logic (1) (8) g . . . . 190 semantics 190 (8) + g . . . . . 356 denotational semantics . . . . . 119 domain theory g . . . . . . 120 domain . . . . . 360 program analysis . . . . . 359 process model . . . . . SbC 215 Kripke semantics + g . . . . . . Not 489 accessability relation + . . . . . 357 operational semantics . . . . . 358 partial evaluation . . . . . 355 algebraic semantics . . . . 189 reasoning about programs . . . . 53 automated reasoning (25) + . . . . . 35 belief revision . . . . . . 76 update . . . . . 67 nonmonotonic reasoning . . . . . 63 mathematical induction . . . . . 71 rewrite system (3) . . . . . . 350 termination . . . . . . 348 confluence . . . . . . 349 critical pair . . . . . 70 resolution (7) + . . . . . . 339 purity principle . . . . . . 342 simplification . . . . . . 337 demodulation . . . . . . 338 ordering . . . . . . 340 removal of tautologies . . . . . . 341 resolution refinement (4) . . . . . . . 345 lock resolution . . . . . . . 344 hyper resolution . . . . . . . 347 theory resolution . . . . . . . 346 set of support . . . . . . 343 subsumption . . . . . 68 paramodulation . . . . . Not 72 skolemisation . . . . . 65 model checking . . . . . 55 clause 55 (2) . . . . . . 80 horn clause g . . . . . . 79 Gentzen clause . . . . . 74 uncertainty . . . . . 75 unification + . . . . . 57 connection graph procedure . . . . . 64 metatheory . . . . . 61 literal . . . . . 58 connection matrix . . . . . 81 clause 81 . . . . . . SbC 82 relative clause . . . . . 69 reason extraction . . . . . 59 deduction (7) + . . . . . . Not 109 inconsistency . . . . . . 106 consequence g . . . . . . SbC 494 labelled deductive system . . . . . . 111 rule-based deduction . . . . . . Not 108 entailment + . . . . . . 110 natural deduction (2) + g . . . . . . . Not 482 hypothetical reasoning + . . . . . . . Not 483 normalization . . . . . . Not 107 consistency + . . . . . Res 60 Herbrand's theorem . . . . . 56 completion . . . . . . 86 Knuth Bendix completion . . . . . 73 theorem prover (3) . . . . . . 427 Bliksem g . . . . . . 428 Boyer-Moore theorem prover . . . . . . 429 SPASS g . . . . . 66 narrowing . . . . . 62 logic programming g . . . . . 54 answer extraction . . . . . 247 nonmonotonic logic + g . . . . . . 248 default inference . . . . Not 83 completeness (2) + g . . . . . SbC 84 axiomatic completeness . . . . . SbC 85 functional completeness + . . . . 188 program verification (4) . . . . . 274 mechanical verification . . . . . 269 invariant + . . . . . 273 logic of programs . . . . . 43 assertion (2) + . . . . . . 45 imperative assertion . . . . . . 44 declarative assertion . . . . 435 type theory (2) + . . . . . 433 type . . . . . . 434 type shifting . . . . . Not 23 polymorphism + g . . . . 186 program construct (5) . . . . . 265 functional construct . . . . . 267 program scheme . . . . . 266 object oriented construct . . . . . 264 control primitive . . . . . 268 type structure . . . . 187 program specification (5) . . . . . 271 pre-condition . . . . . 269 invariant + . . . . . 272 specification technique . . . . . 43 assertion (2) + . . . . . . 45 imperative assertion . . . . . . 44 declarative assertion . . . . . 270 post-condition . . . Par 48 automata theory (4) . . . . Not 52 Turing machine + . . . . 50 linear bounded automaton . . . . 49 finite state machine g . . . . 51 push down automaton . 173 linguistics (13) g . . Par 446 descriptive linguistics g . . . 142 grammar (5) g . . . . Not 519 derivation g . . . . 452 grammatical constituent g . . . . . 121 ellipsis g . . . . . . 122 antecedent of ellipsis . . . . 444 linguistic unit (3) g . . . . . SbC 440 word (5) g . . . . . . 28 anaphor (2) g . . . . . . . 30 antecedent of an anaphor . . . . . . . 29 anaphora resolution . . . . . . 278 pronoun (2) g . . . . . . . 280 pronoun resolution . . . . . . . 279 demonstrative g . . . . . . 138 function word (2) g . . . . . . . SbC 139 determiner g . . . . . . . SbC 441 modifier g . . . . . . . . 445 adjective (4) g . . . . . . . . . 4 predicative position . . . . . . . . . 1 adverbial modification g . . . . . . . . . 3 intersective adjective . . . . . . . . . 2 graded adjective . . . . . . 442 content word g . . . . . . 425 term (2) g . . . . . . . 426 singular term g . . . . . . . 260 plural term (2) g . . . . . . . . 261 collective reading . . . . . . . . 262 distributive reading . . . . . SbC 500 quantified phrases + . . . . . SbC 115 discourse (3) g . . . . . . 116 discourse particle . . . . . . 118 discourse representation theory g . . . . . . 117 discourse referent . . . . 144 syntax 144 (2) g . . . . . 453 logical syntax g . . . . . . 12 algebraic logic (10) + . . . . . . . 6 boolean algebra + . . . . . . . . SbC 7 boolean algebra with operators . . . . . . . 17 post algebra . . . . . . . 15 Lukasiewicz algebra . . . . . . . 14 cylindric algebra g . . . . . . . 8 lattice + g . . . . . . . 18 quantum logic . . . . . . . 10 relation algebra + . . . . . . . 13 categorical logic . . . . . . . 16 polyadic algebra . . . . . . . 19 topos . . . . . 423 syntactic category (3) g . . . . . . 447 part of speech g . . . . . . SbC 249 noun (2) g . . . . . . . SbC 251 proper name . . . . . . . SbC 250 mass noun g . . . . . . SbC 438 verb g . . . . . . . SbC 439 perception verb . . . . 143 sentence g . . 443 linguistic geography g . . Not 502 discontinuity . . Par 361 formal semantics (10) + g . . . 365 property theory . . . 240 Montague grammar (4) . . . . 243 sense 243 (4) g . . . . . 203 meaning relation (5) . . . . . . 205 hyponymy g . . . . . . 204 antonymy g . . . . . . 207 synonymy g . . . . . . . 149 intensional isomorphism + . . . . . . 206 paraphrase g . . . . . . 108 entailment + . . . . . 375 metaphor g . . . . . 376 metonymy g . . . . . 374 literal meaning . . . . 244 sense 244 g . . . . 241 meaning postulate . . . . 242 ptq g . . . . . 300 quantifying in . . . 254 quantifier (5) + g . . . . Not 516 bound variable + g . . . . His 514 Frege on quantification + g . . . . Not 517 free variable + g . . . . His 513 Aristotle on quantification + . . . . Not 301 scope . . . . . 351 scoping algorithm . . . 353 truth (4) + . . . . 431 truth definition g . . . . 432 truth value . . . . 372 truth function + g . . . . 430 truth condition . . . 362 dynamic semantics . . . 363 lexical semantics . . . 366 situation semantics (2) g . . . . 402 partiality . . . . 400 situation . . . . . 401 scene . . . Not 507 compositionality . . . 364 natural logic + . . . Par 515 quantification (4) + . . . . Not 516 bound variable + g . . . . His 514 Frege on quantification + g . . . . Not 517 free variable + g . . . . His 513 Aristotle on quantification + . . Not 20 ambiguity (7) g . . . SbC 27 syntactic ambiguity . . . SbC 25 semantic ambiguity + g . . . SbC 22 lexical ambiguity g . . . SbC 21 derivational ambiguity . . . SbC 24 pragmatic ambiguity . . . SbC 26 structural ambiguity . . . 23 polymorphism + g . . 510 frameworks (7) . . . 535 LFG . . . 128 categorial grammar + . . . . SbC 528 combinatorial categorial grammar . . . 530 TAG . . . 532 DRT . . . 529 GB . . . 534 HPSG . . . 531 dynamic syntax . . 506 linguistic phenomena . . Not 174 language acquisition g . . Par 450 pragmatics (2) g . . . 403 speech act (5) g . . . . 408 statement (2) g . . . . . 112 description (2) g . . . . . . SbC 114 indefinite description . . . . . . SbC 113 definite description . . . . . 409 indicative statement . . . . 405 indirect speech act . . . . 406 performative . . . . 407 performative hypothesis . . . . 404 illocutionary force . . . 100 conversational maxim (3) g . . . . 103 implicature + g . . . . 102 cooperative principle . . . . 101 conversational implicature g . . 499 syntax and semantic interface + . . Par 175 semantics 175 (16) g . . . 25 semantic ambiguity + g . . . Not 123 extension g . . . . 124 extensionality g . . . 334 referent g . . . Not 332 reference (2) g . . . . 333 identity puzzle . . . . 335 referential term . . . . . SbC 336 anchor . . . Not 263 presupposition g . . . . 103 implicature + g . . . Not 146 indexicality . . . . 147 indexical expression g . . . Par 41 aspect . . . . 42 aspectual classification . . . SbC 361 formal semantics (10) + g . . . . 365 property theory . . . . 240 Montague grammar (4) . . . . . 243 sense 243 (4) g . . . . . . 203 meaning relation (5) . . . . . . . 205 hyponymy g . . . . . . . 204 antonymy g . . . . . . . 207 synonymy g . . . . . . . . 149 intensional isomorphism + . . . . . . . 206 paraphrase g . . . . . . . 108 entailment + . . . . . . 375 metaphor g . . . . . . 376 metonymy g . . . . . . 374 literal meaning . . . . . 244 sense 244 g . . . . . 241 meaning postulate . . . . . 242 ptq g . . . . . . 300 quantifying in . . . . 254 quantifier (5) + g . . . . . Not 516 bound variable + g . . . . . His 514 Frege on quantification + g . . . . . Not 517 free variable + g . . . . . His 513 Aristotle on quantification + . . . . . Not 301 scope . . . . . . 351 scoping algorithm . . . . 353 truth (4) + . . . . . 431 truth definition g . . . . . 432 truth value . . . . . 372 truth function + g . . . . . 430 truth condition . . . . 362 dynamic semantics . . . . 363 lexical semantics . . . . 366 situation semantics (2) g . . . . . 402 partiality . . . . . 400 situation . . . . . . 401 scene . . . . Not 507 compositionality . . . . 364 natural logic + . . . . Par 515 quantification (4) + . . . . . Not 516 bound variable + g . . . . . His 514 Frege on quantification + g . . . . . Not 517 free variable + g . . . . . His 513 Aristotle on quantification + . . . Not 501 coordination . . . Not 353 truth (4) + . . . . 431 truth definition g . . . . 432 truth value . . . . 372 truth function + g . . . . 430 truth condition . . . Not 354 underspecification (2) . . . . 437 quasi-logical form . . . . 436 monotonic semantics . . . 499 syntax and semantic interface + . . . Par 46 attitude . . . . SbC 47 propositional attitude . . . . . Not 299 belief . . . Not 500 quantified phrases + . . . Not 148 intension (3) g . . . . 149 intensional isomorphism + . . . . 151 intensionality . . . . 150 intensional verb . . . 31 animal (3) g . . . . SbC 33 unicorn . . . . SbC 32 donkey . . . . SbC 352 rabbit . . Par 496 syntax 496 (2) g . . . Par 498 word order . . . Par 497 movement . . Par 140 language generation . . . 141 reversibility . 202 mathematics (5) g . . Not 527 algebra 2 g . . 191 logic (1) (31) + g . . . Par 53 automated reasoning (25) + . . . . 35 belief revision . . . . . 76 update . . . . 67 nonmonotonic reasoning . . . . 63 mathematical induction . . . . 71 rewrite system (3) . . . . . 350 termination . . . . . 348 confluence . . . . . 349 critical pair . . . . 70 resolution (7) + . . . . . 339 purity principle . . . . . 342 simplification . . . . . 337 demodulation . . . . . 338 ordering . . . . . 340 removal of tautologies . . . . . 341 resolution refinement (4) . . . . . . 345 lock resolution . . . . . . 344 hyper resolution . . . . . . 347 theory resolution . . . . . . 346 set of support . . . . . 343 subsumption . . . . 68 paramodulation . . . . Not 72 skolemisation . . . . 65 model checking . . . . 55 clause 55 (2) . . . . . 80 horn clause g . . . . . 79 Gentzen clause . . . . 74 uncertainty . . . . 75 unification + . . . . 57 connection graph procedure . . . . 64 metatheory . . . . 61 literal . . . . 58 connection matrix . . . . 81 clause 81 . . . . . SbC 82 relative clause . . . . 69 reason extraction . . . . 59 deduction (7) + . . . . . Not 109 inconsistency . . . . . 106 consequence g . . . . . SbC 494 labelled deductive system . . . . . 111 rule-based deduction . . . . . Not 108 entailment + . . . . . 110 natural deduction (2) + g . . . . . . Not 482 hypothetical reasoning + . . . . . . Not 483 normalization . . . . . Not 107 consistency + . . . . Res 60 Herbrand's theorem . . . . 56 completion . . . . . 86 Knuth Bendix completion . . . . 73 theorem prover (3) . . . . . 427 Bliksem g . . . . . 428 Boyer-Moore theorem prover . . . . . 429 SPASS g . . . . 66 narrowing . . . . 62 logic programming g . . . . 54 answer extraction . . . . 247 nonmonotonic logic + g . . . . . 248 default inference . . . Par 198 proof theory (22) g . . . . SbC 503 sequent calculus . . . . . Not 484 structural rules . . . . 289 interpretation . . . . 282 constructive analysis . . . . 295 recursive ordinal . . . . 287 Goedel numbering . . . . 288 higher-order arithmetic . . . . 281 complexity of proofs . . . . 294 recursive analysis . . . . Res 292 normal form theorem . . . . 297 second-order arithmetic . . . . SbC 110 natural deduction (2) + g . . . . . Not 482 hypothetical reasoning + . . . . . Not 483 normalization . . . . 290 intuitionistic mathematics . . . . 286 functionals in proof theory . . . . 298 structure of proofs g . . . . 283 constructive system . . . . 291 metamathematics . . . . 59 deduction (7) + . . . . . Not 109 inconsistency . . . . . 106 consequence g . . . . . SbC 494 labelled deductive system . . . . . 111 rule-based deduction . . . . . Not 108 entailment + . . . . . 110 natural deduction (2) + g . . . . . . Not 482 hypothetical reasoning + . . . . . . Not 483 normalization . . . . . Not 107 consistency + . . . . 296 relative consistency . . . . Not 284 cut elimination theorem g . . . . 293 ordinal notation . . . . 285 first-order arithmetic . . . . SbC 485 proof nets . . . SbC 475 first order logic (4) g . . . . 254 quantifier (5) + g . . . . . Not 516 bound variable + g . . . . . His 514 Frege on quantification + g . . . . . Not 517 free variable + g . . . . . His 513 Aristotle on quantification + . . . . . Not 301 scope . . . . . . 351 scoping algorithm . . . . Par 476 first order language g . . . . . Not 477 fragment (3) g . . . . . . SbC 479 finite-variable fragment g . . . . . . SbC 480 guarded fragment g . . . . . . SbC 478 modal fragment g . . . . . . . Not 470 standard translation + g . . . . 511 SPASS g . . . . Par 515 quantification (4) + . . . . . Not 516 bound variable + g . . . . . His 514 Frege on quantification + g . . . . . Not 517 free variable + g . . . . . His 513 Aristotle on quantification + . . . 193 computability theory . . . SbC 167 temporal logic (2) + g . . . 435 type theory (2) + . . . . 433 type . . . . . 434 type shifting . . . . Not 23 polymorphism + g . . . 495 substructural logic . . . SbC 200 relevance logic + . . . . 108 entailment + . . . Res 180 Lindstroem's theorem + . . . SbC 481 linear logic . . . 526 variable g . . . . SbC 517 free variable + g . . . Res 179 Goedel's 1st incompleteness theorem (1931) + g . . . SbC 125 feature logic + . . . . 75 unification + . . . 197 model theory (29) . . . . 237 set-theoretic model theory . . . . 11 universal algebra + . . . . 225 infinitary logic . . . . 217 admissible set . . . . 234 recursion-theoretic model theory . . . . 239 ultraproduct . . . . 227 logic with extra quantifiers . . . . SbC 457 modal model theory (7) + . . . . . SbC 215 Kripke semantics + g . . . . . . Not 489 accessability relation + . . . . . Not 461 generated submodel g . . . . . 462 model (4) + . . . . . . SbC 464 finite model g . . . . . . SbC 466 image finite model . . . . . . . Res 467 Hennessy-Milner theorem g . . . . . . Par 463 valuation g . . . . . . SbC 465 tree model g . . . . . Not 459 disjoint union of models g . . . . . 455 homomorphism (2) + g . . . . . . SbC 456 bounded homomorphism g . . . . . . SbC 468 bounded morphism . . . . . Not 469 expressive power g . . . . . . Not 470 standard translation + g . . . . . Not 460 bisimulation g . . . . 219 completeness of theories . . . . 235 saturation . . . . 222 equational class . . . . 238 stability . . . . 233 quantifier elimination . . . . 221 denumerable structure . . . . 228 model-theoretic algebra . . . . 236 second-order model theory . . . . 230 model of arithmetic . . . . 218 categoricity g . . . . 220 definability . . . . 226 interpolation . . . . SbC 454 first order model theory . . . . . 455 homomorphism (2) + g . . . . . . SbC 456 bounded homomorphism g . . . . . . SbC 468 bounded morphism . . . . 231 nonclassical model (2) . . . . . 246 sheaf model . . . . . 245 boolean valued . . . . 201 set theory (24) + g . . . . . 398 set-theoretic definability . . . . . Not 391 iota operator . . . . . 384 determinacy . . . . . 387 fuzzy relation . . . . . Not 385 filter . . . . . 389 generalized continuum hypothesis . . . . . 386 function (3) g . . . . . . 482 hypothetical reasoning + . . . . . . 509 functional application . . . . . . 508 functional composition . . . . . Not 394 ordinal definability . . . . . Not 107 consistency + . . . . . 397 set algebra . . . . . 399 Suslin scheme . . . . . SbC 383 descriptive set theory g . . . . . 388 fuzzy set g . . . . . 378 borel classification g . . . . . SbC 380 combinatorial set theory . . . . . Not 390 independence . . . . . 381 constructibility . . . . . 396 relation g . . . . . 377 axiom of choice g . . . . . 392 large cardinal . . . . . Not 395 ordinal number . . . . . 393 Martin's axiom . . . . . 382 continuum hypothesis g . . . . . Not 379 cardinal number . . . . 232 preservation . . . . 216 abstract model theory + . . . . . 254 quantifier (5) + g . . . . . . Not 516 bound variable + g . . . . . . His 514 Frege on quantification + g . . . . . . Not 517 free variable + g . . . . . . His 513 Aristotle on quantification + . . . . . . Not 301 scope . . . . . . . 351 scoping algorithm . . . . 229 model-theoretic forcing . . . . 224 higher-order model theory . . . . Par 493 correspondence theory . . . . 223 finite structure . . . Res 182 Loewenheim-Skolem-Tarski theorem + . . . Not 83 completeness (2) + g . . . . SbC 84 axiomatic completeness . . . . SbC 85 functional completeness + . . . SbC 156 modal logic (13) + g . . . . Ins 512 S4 . . . . 488 modes . . . . 486 frame (2) . . . . . SbC 487 frame constraints . . . . Par 210 modal operator (2) + g . . . . . SbC 472 diamond g . . . . . SbC 473 box g . . . . SbC 213 doxastic logic g . . . . Not 489 accessability relation + . . . . Par 471 modal language (2) g . . . . . Par 210 modal operator (2) + g . . . . . . SbC 472 diamond g . . . . . . SbC 473 box g . . . . . 490 boolean operators . . . . SbC 211 alethic logic g . . . . SbC 212 deontic logic (3) g . . . . . SbC 521 standard deontic logic g . . . . . SbC 523 two-sorted deontic logic g . . . . . SbC 522 dyadic deontic logic g . . . . Par 215 Kripke semantics + g . . . . . Not 489 accessability relation + . . . . Par 457 modal model theory (7) + . . . . . SbC 215 Kripke semantics + g . . . . . . Not 489 accessability relation + . . . . . Not 461 generated submodel g . . . . . 462 model (4) + . . . . . . SbC 464 finite model g . . . . . . SbC 466 image finite model . . . . . . . Res 467 Hennessy-Milner theorem g . . . . . . Par 463 valuation g . . . . . . SbC 465 tree model g . . . . . Not 459 disjoint union of models g . . . . . 455 homomorphism (2) + g . . . . . . SbC 456 bounded homomorphism g . . . . . . SbC 468 bounded morphism . . . . . Not 469 expressive power g . . . . . . Not 470 standard translation + g . . . . . Not 460 bisimulation g . . . . SbC 214 epistemic logic g . . . . Not 462 model (4) + . . . . . SbC 464 finite model g . . . . . SbC 466 image finite model . . . . . . Res 467 Hennessy-Milner theorem g . . . . . Par 463 valuation g . . . . . SbC 465 tree model g . . . 194 computational logic (2) . . . Not 183 operator (4) + g . . . . 254 quantifier (5) + g . . . . . Not 516 bound variable + g . . . . . His 514 Frege on quantification + g . . . . . Not 517 free variable + g . . . . . His 513 Aristotle on quantification + . . . . . Not 301 scope . . . . . . 351 scoping algorithm . . . . SbC 210 modal operator (2) + g . . . . . SbC 472 diamond g . . . . . SbC 473 box g . . . . 518 truth-funcional operator (2) g . . . . . SbC 252 iff g . . . . . SbC 253 negation . . . . Not 525 arity g . . . SbC 192 combinatory logic g . . . Par 199 recursive function theory . . . 361 formal semantics (10) + g . . . . 365 property theory . . . . 240 Montague grammar (4) . . . . . 243 sense 243 (4) g . . . . . . 203 meaning relation (5) . . . . . . . 205 hyponymy g . . . . . . . 204 antonymy g . . . . . . . 207 synonymy g . . . . . . . . 149 intensional isomorphism + . . . . . . . 206 paraphrase g . . . . . . . 108 entailment + . . . . . . 375 metaphor g . . . . . . 376 metonymy g . . . . . . 374 literal meaning . . . . . 244 sense 244 g . . . . . 241 meaning postulate . . . . . 242 ptq g . . . . . . 300 quantifying in . . . . 254 quantifier (5) + g . . . . . Not 516 bound variable + g . . . . . His 514 Frege on quantification + g . . . . . Not 517 free variable + g . . . . . His 513 Aristotle on quantification + . . . . . Not 301 scope . . . . . . 351 scoping algorithm . . . . 353 truth (4) + . . . . . 431 truth definition g . . . . . 432 truth value . . . . . 372 truth function + g . . . . . 430 truth condition . . . . 362 dynamic semantics . . . . 363 lexical semantics . . . . 366 situation semantics (2) g . . . . . 402 partiality . . . . . 400 situation . . . . . . 401 scene . . . . Not 507 compositionality . . . . 364 natural logic + . . . . Par 515 quantification (4) + . . . . . Not 516 bound variable + g . . . . . His 514 Frege on quantification + g . . . . . Not 517 free variable + g . . . . . His 513 Aristotle on quantification + . . . SbC 168 lambda calculus (4) g . . . . 170 application . . . . 172 lambda operator . . . . 169 abstraction . . . . 171 conversion . . . 38 knowledge representation (20) + g . . . . 152 frame (1) . . . . 104 database + g . . . . . 105 query g . . . . 165 situation calculus . . . . 167 temporal logic (2) + g . . . . 166 temporal logic (1) g . . . . 93 concept formation . . . . . 90 concept + . . . . . . 91 individual concept . . . . 154 logical omniscience . . . . 162 rule-based representation . . . . 157 predicate logic + g . . . . 159 procedural representation . . . . 161 representation language . . . . 156 modal logic (13) + g . . . . . Ins 512 S4 . . . . . 488 modes . . . . . 486 frame (2) . . . . . . SbC 487 frame constraints . . . . . Par 210 modal operator (2) + g . . . . . . SbC 472 diamond g . . . . . . SbC 473 box g . . . . . SbC 213 doxastic logic g . . . . . Not 489 accessability relation + . . . . . Par 471 modal language (2) g . . . . . . Par 210 modal operator (2) + g . . . . . . . SbC 472 diamond g . . . . . . . SbC 473 box g . . . . . . 490 boolean operators . . . . . SbC 211 alethic logic g . . . . . SbC 212 deontic logic (3) g . . . . . . SbC 521 standard deontic logic g . . . . . . SbC 523 two-sorted deontic logic g . . . . . . SbC 522 dyadic deontic logic g . . . . . Par 215 Kripke semantics + g . . . . . . Not 489 accessability relation + . . . . . Par 457 modal model theory (7) + . . . . . . SbC 215 Kripke semantics + g . . . . . . . Not 489 accessability relation + . . . . . . Not 461 generated submodel g . . . . . . 462 model (4) + . . . . . . . SbC 464 finite model g . . . . . . . SbC 466 image finite model . . . . . . . . Res 467 Hennessy-Milner theorem g . . . . . . . Par 463 valuation g . . . . . . . SbC 465 tree model g . . . . . . Not 459 disjoint union of models g . . . . . . 455 homomorphism (2) + g . . . . . . . SbC 456 bounded homomorphism g . . . . . . . SbC 468 bounded morphism . . . . . . Not 469 expressive power g . . . . . . . Not 470 standard translation + g . . . . . . Not 460 bisimulation g . . . . . SbC 214 epistemic logic g . . . . . Not 462 model (4) + . . . . . . SbC 464 finite model g . . . . . . SbC 466 image finite model . . . . . . . Res 467 Hennessy-Milner theorem g . . . . . . Par 463 valuation g . . . . . . SbC 465 tree model g . . . . 97 context (2) . . . . . 99 context dependence . . . . . 98 context change . . . . 160 relation system . . . . 153 frame problem g . . . . 92 concept analysis . . . . . 90 concept + . . . . . . 91 individual concept . . . . 163 script . . . . 145 idea g . . . . . 90 concept + . . . . . . 91 individual concept . . . . 164 semantic network g . . . . 247 nonmonotonic logic + g . . . . . 248 default inference . . . Par 367 semantics 367 (8) g . . . . 371 truth conditional semantics . . . . 373 truth table . . . . SbC 215 Kripke semantics + g . . . . . Not 489 accessability relation + . . . . 85 functional completeness + . . . . 370 satisfaction . . . . 369 material implication g . . . . 368 assignment . . . . Not 372 truth function + g . . . Par 201 set theory (24) + g . . . . 398 set-theoretic definability . . . . Not 391 iota operator . . . . 384 determinacy . . . . 387 fuzzy relation . . . . Not 385 filter . . . . 389 generalized continuum hypothesis . . . . 386 function (3) g . . . . . 482 hypothetical reasoning + . . . . . 509 functional application . . . . . 508 functional composition . . . . Not 394 ordinal definability . . . . Not 107 consistency + . . . . 397 set algebra . . . . 399 Suslin scheme . . . . SbC 383 descriptive set theory g . . . . 388 fuzzy set g . . . . 378 borel classification g . . . . SbC 380 combinatorial set theory . . . . Not 390 independence . . . . 381 constructibility . . . . 396 relation g . . . . 377 axiom of choice g . . . . 392 large cardinal . . . . Not 395 ordinal number . . . . 393 Martin's axiom . . . . 382 continuum hypothesis g . . . . Not 379 cardinal number . . . Par 216 abstract model theory + . . . . 254 quantifier (5) + g . . . . . Not 516 bound variable + g . . . . . His 514 Frege on quantification + g . . . . . Not 517 free variable + g . . . . . His 513 Aristotle on quantification + . . . . . Not 301 scope . . . . . . 351 scoping algorithm . . . 178 compactness + . . . His 177 aristotelean logic (2) + g . . . . Par 39 syllogism g . . . . Par 513 Aristotle on quantification + . . . Par 196 foundations of theories . . . 195 constraint programming . . 424 system g . . Par 5 algebra 1 (8) g . . . 8 lattice + g . . . SbC 6 boolean algebra + . . . . SbC 7 boolean algebra with operators . . . 11 universal algebra + . . . 77 category theory + g . . . . 78 bottom . . . SbC 9 Lindenbaum algebra . . . 10 relation algebra + . . . 12 algebraic logic (10) + . . . . 6 boolean algebra + . . . . . SbC 7 boolean algebra with operators . . . . 17 post algebra . . . . 15 Lukasiewicz algebra . . . . 14 cylindric algebra g . . . . 8 lattice + g . . . . 18 quantum logic . . . . 10 relation algebra + . . . . 13 categorical logic . . . . 16 polyadic algebra . . . . 19 topos . . . Par 491 algebraic principles . . . . SbC 492 residuation . . 176 mathematical logic (12) g . . . Res 180 Lindstroem's theorem + . . . 77 category theory + g . . . . 78 bottom . . . 53 automated reasoning (25) + . . . . 35 belief revision . . . . . 76 update . . . . 67 nonmonotonic reasoning . . . . 63 mathematical induction . . . . 71 rewrite system (3) . . . . . 350 termination . . . . . 348 confluence . . . . . 349 critical pair . . . . 70 resolution (7) + . . . . . 339 purity principle . . . . . 342 simplification . . . . . 337 demodulation . . . . . 338 ordering . . . . . 340 removal of tautologies . . . . . 341 resolution refinement (4) . . . . . . 345 lock resolution . . . . . . 344 hyper resolution . . . . . . 347 theory resolution . . . . . . 346 set of support . . . . . 343 subsumption . . . . 68 paramodulation . . . . Not 72 skolemisation . . . . 65 model checking . . . . 55 clause 55 (2) . . . . . 80 horn clause g . . . . . 79 Gentzen clause . . . . 74 uncertainty . . . . 75 unification + . . . . 57 connection graph procedure . . . . 64 metatheory . . . . 61 literal . . . . 58 connection matrix . . . . 81 clause 81 . . . . . SbC 82 relative clause . . . . 69 reason extraction . . . . 59 deduction (7) + . . . . . Not 109 inconsistency . . . . . 106 consequence g . . . . . SbC 494 labelled deductive system . . . . . 111 rule-based deduction . . . . . Not 108 entailment + . . . . . 110 natural deduction (2) + g . . . . . . Not 482 hypothetical reasoning + . . . . . . Not 483 normalization . . . . . Not 107 consistency + . . . . Res 60 Herbrand's theorem . . . . 56 completion . . . . . 86 Knuth Bendix completion . . . . 73 theorem prover (3) . . . . . 427 Bliksem g . . . . . 428 Boyer-Moore theorem prover . . . . . 429 SPASS g . . . . 66 narrowing . . . . 62 logic programming g . . . . 54 answer extraction . . . . 247 nonmonotonic logic + g . . . . . 248 default inference . . . Res 182 Loewenheim-Skolem-Tarski theorem + . . . 181 logical constants . . . Not 83 completeness (2) + g . . . . SbC 84 axiomatic completeness . . . . SbC 85 functional completeness + . . . Res 179 Goedel's 1st incompleteness theorem (1931) + g . . . Not 183 operator (4) + g . . . . 254 quantifier (5) + g . . . . . Not 516 bound variable + g . . . . . His 514 Frege on quantification + g . . . . . Not 517 free variable + g . . . . . His 513 Aristotle on quantification + . . . . . Not 301 scope . . . . . . 351 scoping algorithm . . . . SbC 210 modal operator (2) + g . . . . . SbC 472 diamond g . . . . . SbC 473 box g . . . . 518 truth-funcional operator (2) g . . . . . SbC 252 iff g . . . . . SbC 253 negation . . . . Not 525 arity g . . . Not 178 compactness + . . . Res 520 Goedel's 2nd incompleteness theorem (1931) g . . . 435 type theory (2) + . . . . 433 type . . . . . 434 type shifting . . . . Not 23 polymorphism + g . . . 184 symbolic logic (18) g . . . . SbC 412 dynamic logic . . . . 420 partial logic . . . . SbC 413 fuzzy logic g . . . . 200 relevance logic + . . . . . 108 entailment + . . . . SbC 419 paraconsistent logic . . . . 416 intermediate logic . . . . 125 feature logic + . . . . . 75 unification + . . . . 157 predicate logic + g . . . . 364 natural logic + . . . . SbC 422 propositional logic g . . . . SbC 410 boolean logic g . . . . SbC 156 modal logic (13) + g . . . . . Ins 512 S4 . . . . . 488 modes . . . . . 486 frame (2) . . . . . . SbC 487 frame constraints . . . . . Par 210 modal operator (2) + g . . . . . . SbC 472 diamond g . . . . . . SbC 473 box g . . . . . SbC 213 doxastic logic g . . . . . Not 489 accessability relation + . . . . . Par 471 modal language (2) g . . . . . . Par 210 modal operator (2) + g . . . . . . . SbC 472 diamond g . . . . . . . SbC 473 box g . . . . . . 490 boolean operators . . . . . SbC 211 alethic logic g . . . . . SbC 212 deontic logic (3) g . . . . . . SbC 521 standard deontic logic g . . . . . . SbC 523 two-sorted deontic logic g . . . . . . SbC 522 dyadic deontic logic g . . . . . Par 215 Kripke semantics + g . . . . . . Not 489 accessability relation + . . . . . Par 457 modal model theory (7) + . . . . . . SbC 215 Kripke semantics + g . . . . . . . Not 489 accessability relation + . . . . . . Not 461 generated submodel g . . . . . . 462 model (4) + . . . . . . . SbC 464 finite model g . . . . . . . SbC 466 image finite model . . . . . . . . Res 467 Hennessy-Milner theorem g . . . . . . . Par 463 valuation g . . . . . . . SbC 465 tree model g . . . . . . Not 459 disjoint union of models g . . . . . . 455 homomorphism (2) + g . . . . . . . SbC 456 bounded homomorphism g . . . . . . . SbC 468 bounded morphism . . . . . . Not 469 expressive power g . . . . . . . Not 470 standard translation + g . . . . . . Not 460 bisimulation g . . . . . SbC 214 epistemic logic g . . . . . Not 462 model (4) + . . . . . . SbC 464 finite model g . . . . . . SbC 466 image finite model . . . . . . . Res 467 Hennessy-Milner theorem g . . . . . . Par 463 valuation g . . . . . . SbC 465 tree model g . . . . SbC 418 many-valued logic g . . . . SbC 417 intuitionistic logic g . . . . SbC 421 probability logic . . . . 411 conditional logic . . . . SbC 414 higher-order logic . . . . 415 inductive logic . 258 philosophy (3) g . . Par 524 philosophy of language g . . Par 259 logic 259 (2) g . . . His 177 aristotelean logic (2) + g . . . . Par 39 syllogism g . . . . Par 513 Aristotle on quantification + . . . 449 proposition (2) g . . . . 448 contradiction g . . . . . 255 paradox (2) g . . . . . . 256 liar paradox g . . . . . . 257 semantic paradox . . . . 94 conditional statement (2) . . . . . 95 antecedent . . . . . 96 counterfactual g . . Par 208 metaphysics g . . . 209 common sense world g

9. Institutt For Matematiske Fag
JL, C. Jensen, H. Lenzing, Modeltheoretic algebra with particular emphasis on fields, rings, modules, algebra, Logic and Applications, 2,
http://www.math.ntnu.no/~oyvinso/Nordfjordeid/Program/furtherreading.html
Summer School 2001:
Homological conjectures for finite dimensional algebras
Further references, incomplete at this point
AB M. Auslander, R.-O. Buchweitz, The homological theory of maximal Cohen-Macaulay approximations AR M. Auslander, I. Reiten, k-Gorenstein algebras and syzygy modules, J. Pure Appl. Algebra 92 (1994), no. 1, 1-27. M. Auslander, I. Reiten, On a generalized version of the Nakayama conjecture , Proc. Amer. Math. Soc. 52 (1975), 69-74. B H. Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95, 1960, 466-488 BS Relative cotilting theory and almost complete cotilting modules, CMS Conference Proc., vol. 24 (1998) 77-92 BFVHZ W. D. Burgess, K. R. Fuller, E. R. Voss, and B. Huisgen-Zimmermann, The Cartan matrix as an indicator of finite global dimension for artinian rings, Proc. Amer. Math. Soc. 95 (1985) 157-165 BHZ W. D. Burgess and B. Huisgen-Zimmermann, Approximating modules by modules of finite projective dimension, J. Algebra 178 (1995) 48-91

10. MSC 2000 : CC = Ore
03C25 Modeltheoretic forcing; 03C55 Set-theoretic model theory 15-99 Linear and multilinear algebra; matrix theory (finite and infinite) (not
http://portail.mathdoc.fr/cgi-bin/msc2000.py?L=fr&T=Q&C=msc2000&CC=Ore

11. Buy.com - Algebra, Logic, Set Theory : ISBN 9781904987284
This volume is both a tribute to Ulrich Felgner s research in algebra, logic, of choice via Modeltheoretic algebra to the mathematics of intonation.
http://www.buy.com/prod/algebra-logic-set-theory/q/loc/106/204202885.html
My Account Wishlist Help All Departments ... Warranties Books by Title by Author by ISBN by Publisher Buy.com
Save $30 Instantly with the Buy.com Visa Card. Click here. Books Best-sellers New ... Rewards UpdateProductViewHistoryCookie('Algebra, Logic, Set Theory','204202885');
Algebra, Logic, Set Theory (Hardcover)
Editor: B. Loewe Product Image enlarge image
Pricing Additional Info FREE SHIPPING Our Price: Shipping FREE Buy.com Total Price: Qty In Stock: Usually Ships in 1 to 2 business days. Format: Hardcover See all 4 New from What's this? Format: Hardcover ISBN: Publish Date: Publisher: College Publications Pages: Buy.com Sku: More about this product Item#: RWYTTQ View similar products Product Summary Reviews This volume is both a tribute to Ulrich Felgner's research in algebra, logic, and set theory and a strong research contribution to these areas. Felgner's former students, friends and collaborators have contributed sixteen papers to this volume that highlight the unity of these three fields in the spirit of Ulrich Felgner's own research. The interested reader will find excellent original research surveys and papers that span the field from set theory without the axiom of choice via model-theoretic algebra to the mathematics of intonation.
ISBN: Publisher: College Publications
Buy.com Total Price:

12. Foundations Of Mathematics
I do agree that, for instance, Modeltheoretic algebra is an interesting subject with its own identity, somewhat distinct from algebra, and the distinction
http://cs.nyu.edu/pipermail/fom/1997-October/000020.html
foundations of mathematics
Stephen G Simpson simpson at math.psu.edu
Thu Oct 2 09:53:39 EDT 1997 More information about the FOM mailing list

13. Model Theory - Elsevier
nonstandard analysis, Modeltheoretic algebra, recursive model theory, abstract model theory, and model theories for a host of nonfirst order logics.
http://129.35.76.177/wps/find/bookdescription.cws_home/502287/description?navope

14. Sachgebiete Der AMS-Klassifikation: 00-09
this section 03Cxx Model theory 03C05 Equational classes, universal algebra, See also {03D45} 03C60 Modeltheoretic algebra, See also {08C10, 12Lxx,
http://www.math.fu-berlin.de/litrech/Class/ams-00-09.html
Sachgebiete der AMS-Klassifikation: 00-09
nach 90-99 Weiter nach 10-19 Suche in allen Klassifikationen
01-XX 03-XX 04-XX 05-XX 06-XX 08-XX
nach 90-99 Weiter nach 10-19 Suche in allen Klassifikationen

15. Mhb03.htm
03C60, Modeltheoretic algebra See also 08C10, 12Lxx, 13L05. 03C62, Models of arithmetic and set theory See also 03Hxx
http://www.mi.imati.cnr.it/~alberto/mhb03.htm
03-XX Mathematical logic and foundations General reference works (handbooks, dictionaries, bibliographies, etc.) Instructional exposition (textbooks, tutorial papers, etc.) Research exposition (monographs, survey articles) Explicit machine computation and programs (not the theory of computation or programming) Proceedings, conferences, collections, etc. General logic Classical propositional logic Classical first-order logic Higher-order logic and type theory Subsystems of classical logic (including intuitionistic logic) Abstract deductive systems Decidability of theories and sets of sentences [See also Foundations of classical theories (including reverse mathematics) [See also Mechanization of proofs and logical operations [See also Combinatory logic and lambda-calculus [See also Logic of knowledge and belief Temporal logic ; for temporal logic, see ; for provability logic, see also Probability and inductive logic [See also Many-valued logic Fuzzy logic; logic of vagueness [See also Logics admitting inconsistency (paraconsistent logics, discussive logics, etc.)

16. Clark: On Elementary Equivalence, Isomorphism And Isogeny
10 C. U. Jensen, H. Lenzing, Modeltheoretic algebra with particular textitasis on fields, rings and modules. algebra, Logic and Applications 2,
http://jtnb.cedram.org/jtnb-bin/fitem?id=JTNB_2006__18_1_29_0

17. MSC 2000 : CC = Mod
03C60 Modeltheoretic algebra See also 08C10, 11U09, 12L12, 13L05, 16B70, 20A15 13E10 Artinian rings and modules, finite-dimensional algebras
http://math-doc.ujf-grenoble.fr/cgi-bin/msc2000.py?L=fr&T=Q&C=msc2000&CC=Mod

18. MathNet-Mathematical Subject Classification
03C60, Modeltheoretic algebra See also 08C10, 12L12, 13L05. 03C62, Models of arithmetic and set theory See also 03Hxx
http://basilo.kaist.ac.kr/API/?MIval=research_msc_1991_out&class=03-XX

19. EBooks.com The World's Leading Source Of EBooks
Recursive algebra, Analysis and Combinatorics By Ershov, Y.L. (ed. nonstandard analysis, Modeltheoretic algebra, recursive model theory,
http://www.ebooks.com/subjects/b/268/9.asp
Download a book today
102,000 popular, professional and academic ebooks from the world's leading publishers Home My Account My Wishlist Help ... Search options Choose a category... Bestsellers - This Week Bestsellers - Last 6 months Archaeology Architecture Art Computers Current Events Drama Education The Environment Fiction Food and Wine Foreign Language Books Foreign Language Study Games Gardening Graphic Novels History Humor Juvenile Nonfiction Law Literary Collections Literary Criticism Mathematics Media Medical Music Nature Performing Arts Pets Philosophy Photography Poetry Political Science Reference Religion Romance Science Science Fiction Self-Help Sex Social Science Study Aids Technology Transportation Travel True Crime Best Sellers
Alerts
Most Popular Subjects Body Mind Spirit
Business

Computers

History
...
Thrillers
Non-Fiction Archaeology
Architecture

Art

Body Mind Spirit
...
Mathematics : Calculus
Calculus eBooks
You have selected the subject of Calculus . The eBooks in this subject are listed below. RESULTS: 81 to 90 of 101
PAGE Real Analysis By: Dshalalow, Jewgeni H. Published by: CRC Press With coverage of topology, measure theory and integration, this text offers a thorough elaboration of major theorems, notions and constructions needed not only by mathematics students but also by students of statistics and probability, operations research, physics and engineering.

20. Logic And Language Links: Model-Theoretic Algebra
You have selected the concept Modeltheoretic algebra. Parent. Model Theory. Short description This node has no children.
http://ilps.science.uva.nl/LoLaLi/alpha/228.html
Siblings tell me more... You have selected the concept Model-Theoretic Algebra Parent: Short description: This node has no children. Long description: Not available yet.
Meta information:
  • Author: Maarten de Rijke
  • Last modified: 2002:02:10, 21:07
  • Previous version:
Home
Page generated on: 2002:2:12, 07:26 Information about LoLaLi.net Handbook
  • Not available yet.
tell me more...
External Links
  • Not available yet.
tell me more...

21. Department Of Mathematics - University Of Georgia
Modeltheoretic algebra. Primality testing, primes in arithmetic progressions, zeroes of Dirichlet L-series. Post Doctoral Associates and their fields of
http://www.math.uga.edu/research/number_theory.html
Number Theory and Arithmetic Geometry Group Permanent faculty and their fields of interests.
Pete L. Clark
Assistant Professor, Ph.D. Harvard 2003. Arithmetic of abelian varieties; torsion points, endomorphism algebras, Weil-Chatelet groups. Modular curves and Shimura curves. Period-index problems. Pointless varieties and the (anti-) Hasse principle. Geometric approaches to the inverse Galois problem. Jonathan Hanke Assistant Professor, Ph. D. Princeton, 1999 . Arithmetic of Quadratic forms and their connections to Automorphic Forms, with an emphasis on computation. Topics include Local-Global principles, Local Densities, Mass Formulas, Class Numbers, Explicit Finiteness Theorems, and Computing all integers represented by a given Quadratic Form. Dino Lorenzini Professor, Ph.D. U.C. Berkeley, 1988 Neil Lyall Assistant Professor Ph.D., University of Wisconsin, 2004

22. INI Programme MAA
A substantial knowledge of algebra, and nowadays of algebraic and analytic at the centre of Modeltheoretic proofs of results in arithmetic geometry.
http://www.newton.cam.ac.uk/programmes/MAA/index.html
@import url("/css/prog-non_n4.css"); Institute Home Page
Programmes

Web-Seminars

Programme Home

Seminars Full list
Workshops

Participants Long Stay
Short Stay

Additional Links Contacts
Mailing List

Final Scientific Report (145KB.pdf)
Isaac Newton Institute for Mathematical Sciences
Model Theory and Applications to Algebra and Analysis
17 Jan - 15 Jul 2005 Organisers Professor Z Chatzidakis ( CNRS ), Professor HD Macpherson ( Leeds ), Professor A Pillay ( Illinois ), Professor A Wilkie ( Oxford
Programme theme
Model theory is a branch of mathematical logic dealing with abstract structures (models), historically with connections to other areas of mathematics. In the past decade, model theory has reached a new maturity, allowing for a strengthening of these connections and striking applications to diophantine geometry, analytic geometry and Lie theory, as well as strong interactions with group theory, representation theory of finite-dimensional algebras, and the study of the p-adics. The main objective of the semester will be to consolidate these advances by providing the required interdisciplinary collaborations. Model theory is traditionally divided into two parts pure and applied. Pure model theory studies abstract properties of first order theories, and derives structure theorems for their models. Applied model theory on the other hand studies concrete algebraic structures from a model-theoretic point of view, and uses results from pure model theory to get a better understanding of the structures in question, of the lattice of definable sets, and of various functorialities and uniformities of definition. By its very nature, applied model theory has strong connections to other branches of mathematics, and its results often have non-model-theoretic implications. A substantial knowledge of algebra, and nowadays of algebraic and analytic geometry, is required.

23. Analytical And Differential - Algebraic Properties Of Gamma Function
Keywords principal part at a point, Gamma function, Kurepa s function, Zeta function, Casimir energy, Modeltheoretic algebra, differential algebra,
http://adsabs.harvard.edu/abs/2006math......5430M
Sign on
Smithsonian/NASA ADS arXiv e-prints Abstract Service
Find Similar Abstracts (with default settings below
arXiv e-print (arXiv:math/0605430)
References in the Article
Citations to the Article (1) Citation History
Refereed Citations to the Article ...
Translate Abstract
Title:
Analytical and differential - algebraic properties of Gamma function Authors:
Publication:

eprint arXiv:math/0605430 Publication Date:
Origin:

ARXIV Keywords:
Mathematics - General Mathematics, Mathematics - Complex Variables, 03C60, 11R42, 11J91, 12H05, 30E20, 34M15 Comment:
Keywords: principal part at a point, Gamma function, Kurepa's function, Zeta function, Casimir energy, model-theoretic algebra, differential algebra, differential transcendency Bibliographic Code:
Abstract
Bibtex entry for this abstract Preferred format for this abstract (see Preferences
Find Similar Abstracts:
Use: Authors Title Keywords (in text query field) Abstract Text Return: Query Results Return items starting with number Query Form Database: Astronomy Physics arXiv e-prints
Smithsonian/NASA ADS Homepage
ADS Sitemap Query Form Basic Search ... FAQ

24. Faculty Research Interests
Real algebraic Geometry, algebra, and algebraic Number Theory. . factoring large integers; Modeltheoretic algebra; and a variety of recreational areas.
http://oregonstate.edu/dept/math/docs/research-links/faculty_research.html
Graduate Faculty
Names, Degrees, Research Fields
Math Home Page OSU Home Page Click on a name to read more about that person's research interests.
  • W.A. Bogley , Ph.D., Oregon, 1987. Topological Group Theory. R.M. Burton , Ph.D., Stanford, 1977. Probability, Modern Analysis, Random Fields, Ergodic Theory, and Dynamical Systems. L.K. Chen , Ph.D., Chicago, 1986. Harmonic Analysis and Control Theory. T.P. Dick , Ph.D., New Hampshire, 1984. Mathematics Education. T. Dray , Ph.D., UC, Berkeley, 1981. General Relativity and Differenital Geometry. C.M. Escher , Ph.D., Pennsylvania, 1993. Differential Geometry B.S. Edwards , Ph.D. The Pennsylvania State University, 1997. Mathematics Education A. Faridani , Ph.D., WWU Muenster, Germany, 1988. Numerical Analysis, Tomography, and Signal Processing. B.I. Fein , Ph.D., Oregon, 1965. Algebra and Algebraic Number Theory. D.V. Finch , Ph.D., MIT, 1977. Applied Analysis, Tomography, and Image Reconstruction. F.J. Flaherty , Ph.D., UC, Berkeley, 1965. Differential Geometry. M.E. Flahive

25. Scientific Commons Anthony G. Cohn
The paper outlines a Modeltheoretic framework for investigating and comparing The framework consists of a Closure algebra (CA) of half-planes (Boolean
http://en.scientificcommons.org/anthony_g_cohn
‹ì]ksÛ¸’ý>¿«­šuj-ɒåWb떣Lw“IÆöÌÜGmi!‘ek~ýv„DÉýÒ¤(‹¨”C‚èFSÎi <æ^  röó¤÷sI*ö³áñ7/ ‰Þ

26. List KWIC DDC22 510 And MSC+ZDM E-N Lexical Connection
Modeltheoretic algebra 03C60 Model-theoretic forcing 03C25 modeling k-epsilon 76F60 modeling simulation and numerical 81T80
http://www.math.unipd.it/~biblio/kwic/msc-cdd/dml2_11_36.htm
mechanics and problems of quantization # general quantum
mechanics of deformable solids 74-XX
mechanics of particles and systems 70-XX
mechanics of solids # generalities, axiomatics, foundations of continuum
mechanics type models; percolation theory # interacting random processes; statistical
mechanics with other effects # coupling of solid
mechanics, general relativity, laser physics) # dynamical systems in other branches of physics (quantum
mechanics, regularization # collisions in celestial
mechanics, structure of matter # statistical 82-XX
mechanics; quantum logic # logical foundations of quantum
mechanisms, robots mechanization of proofs and logical operations media and their use in instruction # audiovisual media with periodic structure # homogenization; partial differential equations in media, disordered materials (including liquid crystals and spin glasses) # random media. educational technology # educational material and media; filtration; seepage # flows in porous medical applications (general) medical epidemiology medical sciences # applications to biology and medical topics # physiological, cellular and

27. General Mathematics Authors/titles May 2006
Comments Keywords principal part at a point, Gamma function, Kurepa s function, Zeta function, Casimir energy, Modeltheoretic algebra,
http://arxiv.org/list/math.gm/0605
arXiv.org math math.GM
Search or Article-id Help Advanced search All papers Titles Authors Abstracts Full text Help pages
General Mathematics
Authors and titles for math.GM in May 2006
[ total of 13 entries:
[ showing up to 25 entries per page: fewer more
arXiv:math/0605027 pdf
Title: A Triple Inequality with Series and Improper Integrals Authors: Florentin Smarandache Comments: 4 pages Journal-ref: Subjects: General Mathematics (math.GM)
arXiv:math/0605120 ps pdf other
Title: The GGU-model and Generation of the Developmental Paradigms Authors: Robert A. Herrmann Comments: Plain Tex, 7 pages. In this version, improvements and a correction are made Subjects: General Mathematics (math.GM)
arXiv:math/0605181 ps pdf other
Title: Bijections and metric spaces induced by some collective properties of concave Young-functions Authors: N. K. Agbeko Comments: We note that in [3], Lemma 7 is wrong. Fortunately, nothing is lost. We should like to refer the reader to the referee's note for the Mathematical Reviews: MR2148839(2006e:26005) Subjects: General Mathematics (math.GM)

28. JSTOR Model Theoretic Algebra
MODEL THEORETIC algebra 539 In this section we will give a similar application of a transfer theorem for valued fields (fields with valuation).
http://links.jstor.org/sici?sici=0022-4812(197606)41:2<537:MTA>2.0.CO;2-J

29. Summer 2001
1030 1130, Michael Makkai, Model Theoretic algebra, Arts 108. 1030 - 1130, Grace Orzech and Morris Orzech, Mathematical Education Cognition in
http://www.math.ca/Events/summer01/daily.html
Detailed session schedules will be posted on the web site beginning in late-March. Once the schedule is made available to us from the organizers, we will post them as quickly as possible. Please note that schedules are subject to change without notice.
Detailed Schedule
Thursday May 31 CMS Executive Committee Meeting, Salon Batoche, Delta Friday June 1 CMS Development Group Luncheon, Terrace Lounge, Delta Registration and Exhibit area setup, Arts 143 Foyer / Arts Front Foyer CMS Board of Directors Meeting, Battleford Room, Delta Exhibitor Setup, Arts 143 Foyer Mathematics Steering Committee, NSERC Reallocation, Cypress Room, Delta Welcoming Reception, Terrace Lounge, Delta Registration location move, Terrace Lounge to Arts Front Foyer Saturday June 2 CMS Student Committee Meeting, Arts 298 Exhibits, Arts 143 Foyer Registration, Arts Front Foyer Opening Address, Arts 143 CMS Mathematical Competitions Committee Meeting, Arts 31 Georgia Benkart , Plenary Speakers, Arts 143 Coffee, Arts 143 Foyer Jim Arthur, Number Theory - in Honour of David Boyd, Arts 100 Alexander N. Dranishnikov

30. Research Unit "Algebra And Logic" At The University Of Saskatchewan
CMS Summer Meeting 2001, Session on Model Theoretic algebra (June 2001). Organized by B. Hart, F.V. Kuhlmann and S. Kuhlmann. With one plenary speaker (Zoe
http://math.usask.ca/fvk/algg.htm
RESEARCH UNIT "ALGEBRA AND LOGIC"
of the
University of Saskatchewan

106 Wiggins Road
Saskatoon, SK, S7N 5E6, Canada
Phone: (306) 966-6081 - Fax: (306) 966-6086 UPCOMING EVENTS:
THE SIXTH ANNUAL COLLOQUIUMFEST
Saskatoon, April 1 and 2, 2005
Saskatchewan Mathematics Mini-Meeting
Regina, April 15 and 16, 2005
MEMBERS OF THE RESEARCH UNIT "ALGEBRA AND LOGIC":
  • Murray Marshall , professor. Franz-Viktor Kuhlmann , professor. Salma Kuhlmann , professor. Murray Bremner , professor. Pavel Gladki, graduate student. Trevor Green, graduate student. Manuela Haias, graduate student. Bogdan Lataianu, graduate student. Wei Fan, graduate student. A frequent and welcome guest to our seminar: Rajesh Pereira, assistant professor.
Additional Members 2001 - 2003:
  • Jaka Cimpric (Ljubljana), NATO postdoctoral fellow, July 2001 - June 2003 Roland Auer, postdoctoral fellow, January 2002 - May 2003 Mikhail Kotchetov, postdoctoral fellow, September 2002 - July 2003 Alexander Nenashev, short term postdoctoral fellow. Igor Klep (Ljubljana), PhD student. He is Cimpric's student.
  • 31. ICMS News 10 2000/2001
    Workshop on Model Theoretic algebra and algebraic Methods of Computation 4 14 September. Organisers Felipe Cucker (Hong Kong), Pascal Koiran (Lyon),
    http://www.icms.org.uk/archive/publications/2001news/model.html
    NEWS
    Issue No 10
    2000 SCIENTIFIC PROGRAMME
    Workshop on Model Theoretic Algebra and Algebraic
    Methods of Computation
    4 - 14 September
    Organisers:
    Felipe Cucker (Hong Kong),
    Pascal Koiran (Lyon),
    Angus Macintyre (Edinburgh),
    Christian Michaux (Mons)
    Supported by:
    The Engineering and Physical Sciences Research Council
    The objective of the Workshop was to bring together several research groups concerned with definability in classical algebraic structures. There are three easily identified groups:
    (i) applied model theorists; (iii) the Russian school of algorithmic geometry.
    One motivation for holding the Workshop was that there had begun to be significant movement between the groups (e.g. interactions between Macintyre of group (i) with Koiran from group (ii), and with Grigoriev from group (iii)). The algorithmic issues, especially for group (ii), are inextricably linked with definability issues, where model theorists have long experience and a repertoire of techniques. The success of the meeting owed much to the fact that the main groups were strongly represented, and brought to Edinburgh ideas which were evolving even as the meeting was planned. The meeting resulted in progress in four particular areas: Geometry In the setting of complex algebraic geometry Chistov explained some basic new algorithms for smooth stratification.

    32. Model Theoretic Algebra - Algebra Journals, Books & Online Media | Springer
    I found Model Theoretic algebra by Cherlin, G. at springer.com and thought you would be interested in this title. Add a personal message.
    http://www.springer.com/east/home/math/algebra?SGWID=5-10043-22-173760871-0

    33. Deirdre Haskell, Department Of Mathematics & Statistics @ McMaster University
    Research Profile Model theoretic algebra. I am interested in applying the techniques of model theory, which studies algebraic structures in a very general
    http://www.math.mcmaster.ca/people/people_detail.php?id=76

    34. Model Theoretic Algebra With Particular Emphasis On Fields, Rings, Modules:97828
    Model Theoretic algebra With Particular Emphasis on Fields, Rings, Modules2881247172Jensen; Christian. U for $424.13 at eCampus.comSave 50 90% on new
    http://www.ecampus.com/book/2881247172
    My Account Help Desk Market Place Shopping Cart
    No items in cart. Total: X Textbooks Sell Textbooks Books ... Clearance Search Advanced >> Related Topics: Technology Algebra General
    Other versions by this Author
    Model Theoretic Algebra With Particular Emphasis on Fields, Rings, Modules
    Author(s) Jensen Christian. U
    Format : Hardcover
    Pub. Date
    Publisher(s)
    : CRC
    New Price
    List Price
    eVIP Price
    Quantity: New Copy: Usually Ships in 5-7 Business Days Used Price N/A List Price eVIP Price N/A Currently no Marketplace items available at this time. document.write(""); Take 90 Days to Pay on $250 or more with Quick, Easy, Secure Subject to credit approval. Related Items Optimizing Women's Health through Nutrition Retail Price: Our Price: Food-Drug Synergy and Safety Retail Price: Our Price: Reliability And Warranties: Methods for Product Development And Quality Improvement Retail Price: Our Price: Model Theoretic Algebra With Particular Emphasis on Fields, Rings, Modules

    35. 2881247172 Model Theoretic Algebra With Particular Emphasis On
    Alibris has 2881247172 Model Theoretic algebra with Particular Emphasis on Fields, Rings, Modules and other books by Christian U Jensen, Jensen Jensen,
    http://www.alibris.com/search/books/isbn/2881247172
    You'll find it at Alibris! Log in here. Over 60 million used, new, and out-of-print books! YOUR CART items ACCOUNT WISHLIST HELP search all sellers in
    Books Movies DVD VHS Music - Pop/Jazz Pop/Jazz CD Pop/Jazz Vinyl Music - Classical Classical CD Classical Vinyl by title / ISBN
    by song title
    by author
    by composer
    by subject
    your shopping cart
    order status wish list book fetch ... help Sign up for our newsletter and enter to win FREE books. your e-mail address see this month's winners NEW BOOKS OF NOTE COLLEGE TEXTBOOKS BARGAIN BOOKS ... RARE BOOKS
    available COPIES
    Your search: Books ISBN: (3 available copies) Narrow your results by: Signed First edition refine further Page of 1 sort by Seller Rating Price - Low Price - High Condition Title Author Pub Date Model Theoretic Algebra With Particular Emphasis on Fields, Rings, Modules (Algebra, Logic and Applications, Vol 2) by Jensen, Christian. U; Lenzing, Helmt other copies of this book price: Ships within 3 weeks add to wishlist Binding: Hardcover Publisher: CRC ISBN-13: ISBN: Description: New. 2881247172.

    36. A1Books - Model Theoretic Algebra With Particular Emphasis On Fields, Rings, Mod
    A1Books is your bargain outlet for books in all categories at steep discounts, it carries more than a million titles which includes New Books, Used Books,
    http://www.a1books.com/catalog/2881247172
    MY CART item(s) CHECKOUT
    LOGOUT
    MY ACCOUNT FAQ ... SELL YOUR STUFF SEARCH ALL BOOKS ELECTRONICS MEDICAL SUPPLIES PACKING MATERIAL FLAGS Holiday Alert! Please check the "Ship Time" for the seller you order from. Allow extra 7-14 days for actual delivery after the shipment! Model Theoretic Algebra With Particular Emphasis On Fields, Rings, Modules (algebra, Logic And Applications, Vol 2)
    Model Theoretic Algebra With Particular Emphasis On Fields, Rings, Modules (algebra, Logic And Applications, Vol 2) [Hardcover] By Christian. U Jensen, Helmt Lenzing Min Price : click here to see all sellers and prices DotEdu Special : additional 5% off what's this ISBN-10 : ISBN-13 : Binding : Hardcover Pages : Publisher : CRC A1 Accepts showMark(1); What is Google
    Checkout?

    Items From Different Sellers Please read carefully all the information given below, including Ship Time and Seller Comments before placing your order. Price Condition Ship Time Seller Information Rating Buy
    Brand New 3 day(s)
    Seller: see seller profile
    Ships from: NJ
    Ships to:
    Comments:
    Brand new item. Over 3.5 million customers served. Order now. Selling online since 1995. Few left in stock - order soon. Code: C20071223112211C

    37. Model Theoretic Algebra : With Particular Emphasis On Fields, Rings, Modules [Wo
    Subject Model theoretic algebra., Modèles, théorie des., Algèbre., Modèles, Théorie des., Algèbre. • Contents Includes indexes.
    http://www.worldcatlibraries.org/wcpa/top3mset/19723765
    Your Web browser is not enabled for Javascript. Some features of WorldCat will not be available. Home WorldCat Home About WorldCat Help ... Search for Contacts You are not signed in Sign In to WorldCat or Register Search for items: Advanced Search
    Model theoretic algebra : with particular emphasis on fields, rings, modules
    by Christian U Jensen Helmut Lenzing
    Type: Book Language: English Publisher: ISBN: OCLC: Related Subjects: Model theoretic algebra. Modèles, théorie des. Algèbre. More Subjects ... Citations: Cite this Item Export to EndNote Export to RefWorks
    Get It
    Find in other WorldCat libraries Buy from Amazon.com
    Save It
    Add This Page to Favorites Save to: [New List] [Existing Lists] Things I Recommend Things I Own Things to Check Out Your list has reached the limit of 250 items. Please create a new list with a new name; move some items to a new or existing list; or delete some items.
    Add to It
    Review this Item Edit Public Notes
    Share It
    Link to this Page addthis_url = location.href; addthis_title = document.title; addthis_pub = 'worldcatorg'; Libraries Details Subjects Reviews Enter Location Information: Enter postal code, state, province or country

    38. Textbookx.com - 9782881247170 Model Theoretic Algebra With Particular Emphasis O
    Buy Model Theoretic algebra With Particular Emphasis on Fields, Rings, Modules by Helmut Lenzing at TextbookX.com. ISBN/UPC 9782881247170.
    http://www.textbookx.com/detail-book-2881247172.html
    Welcome Guest! LogIn Register home contacts ... shopping cart Your shopping cart is empty Product Search:
    Login: Password: Remember me Create an account
    HOME
    MY ACCOUNT SCHOLARSHIPS ... Returns
    Model Theoretic Algebra With Particular Emphasis on Fields, Rings, Modules Helmut Lenzing ISBN:
    Published:
    CRC Pr I Llc
    Publish Date:
    Pages:
    Binding:
    Hardcover
    Dimensions: 19.00 L x 13.00 W x 2.50 H
    Weight: 3.60 lbs
    add cover image for this book
    Description: Rate this book now! 5 (excellent) 4 (good) 3 (average) 2 (poor) 1 (awful) Leave a comment about this book: buy this book now! Marketplace As low as: SELL YOUR BOOKS Sell your books and earn 200% more than campus buyback HOME ABOUT REGISTER CATALOG ... Terms and Conditions of Use, Security and var lpPosY = 100;

    39. RUTGERS-NB Mathematics Department Faculty
    discrete groups, group actions, combinatorics for problems in algebra, KacMoody groups Gregory Cherlin logic, model theory, model theoretic algebra
    http://www.math.rutgers.edu/people/faculty.html
    FACULTY
    The following is a list of faculty members of the Rutgers University Mathematics Department along with information about their research interests. Information such as postal addresses, and phone numbers can be obtained by searching Rutgers . To view a faculty members personal home page, click on their underlined name.

    40. Bulletin Of The American Mathematical Society
    Title Model theoretic algebra Additional book information Gordon Breach, New York, 1989, 430 pp., $59.00. ISBN 288124-717-2
    http://www.ams.org/bull/1991-25-01/S0273-0979-1991-16072-6/home.html

    ISSN 1088-9485(e) ISSN 0273-0979(p) Previous issue Table of contents Next issue
    Articles in press
    ... Next Article Book Review The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.
    Retrieve article in: PDF Book Information
    Author(s): Christian U. Jensen and Helmut Lenzing
    Title: Model theoretic algebra
    Additional book information: References: Note: We will improve the display of references in the near future.
    J. W. Addison, L. Henkin, and A. Tarski (eds.), The theory of models, Proceedings of the 1963 International Symposium at Berkeley, North-Holland, Amsterdam, 1965. MR A. Bauval, Polynomial rings and weak second-order logic, J. Symbolic Logic 50 (1985), 953-972. MR G. L. Cherlin, Model theoretic algebra, Selected Topics. Lecture Notes in Math., vol. 521, Springer-Verlag, Berlin, 1976. MR MR M. Fried and M. Jarden, Field arithmetic, Springer-Verlag, Berlin, 1986. MR L. Henkin, Some interconnections between modern algebra and mathematical logic, Trans. Amer. Math. Soc. 74 (1953), 410-427. MR G. Hermann, Die Frage der endlich vielen Schritte in der Theorie der Polynomideale, Math. Ann. 95 (1926), 736-788.

    41. Book Handbook Of Algebra : A Multi-volume Handbook, Volume 3, Undergraduate Leve
    Model Theoretic algebra.(see also Paul C. Eklof, Whitehead modules in section 3B)Model theory for algebra (M. Prest).Model theory and modules (M. Prest).
    http://www.lavoisier.fr/notice/gb401338.html
    Search on All Book CD-Rom eBook Software The french leading professional bookseller Description
    Handbook of algebra : A multi-volume handbook, Volume 3 Author(s) : HAZEWINKEL
    Publication date : 10-2003
    Language : ENGLISH
    1036p. 24x16.5 Hardback
    Status : In Print (Delivery time : 10 days)
    Description
    Summary
    Subject areas covered:
    • Mathematics and physics Algebra analysis geometry Undergraduate level (part ii) - engineering colleges
    • Mathematics and physics Algebra analysis geometry Postgraduate - research - viva
    New search Your basket Information New titles BiblioAlerts E-books Customer services Open an account Ordering non-listed items Order tracking Help Lavoisier.fr Back to the home page Company information Terms and conditions Partner's sites ... basket Special Offer www.Lavoisier.fr New Geodinamica Acta Vol. 20 N° 5 SeptemberOctober 2007

    42. Curriculum Vitae. A) General Data. Born In Bucharest-Romania, 3.03
    1)Model theoretic algebra. 1.1)Henselian valued fields. Having as starting point the fundamental works of James Ax, Simon Kochen and Jurii Ershov from
    http://www.imar.ro/~sbasarab/
    Curriculum vitae. A) General data. Born in Bucharest-Romania, 3.03.1940, graduate of the Faculty of Electronics of the Technical University of Bucharest in 1961 and of the Faculty of Mathematics of the University of Bucharest in 1969 with a diplom thesis devoted to the Galois Cohomology, having the late Prof.Ionel Bucur as superviser. In 1977 I defended the PhD thesis with the title "Arithmetic and model theory" at the Faculty of Mathematics of the University of Bucharest under the supervision of Acad. Octav Onicescu, who replaced Prof.Ionel Bucur after his premature death. During the period 1979-1982, with some intrerruptions, I activated as visiting professor at the Institute of Mathematics of the University of Heidelberg thanks to a two years fellowship granted by the Alexander von Humboldt Foundation. As a member of the research group of Algebra and Number Theory, I have been decisively influenced by the personality of my academic mentor Prof. Peter Roquette. In 1983 I obtained a four months fellowship to visit the Universities of Firenze and Camerino-Italy, but unfortunatelly I was prevented from honouring the invitation by the communist Romanian authorities. In 1993 I visited the Universities of Wales-Bangor, Queen Marry-London, and Oxford Mathematical Institute under a three months fellowship granted by the European Communities.

    43. Model Theory, Feb 2002, Birmingham
    The following days (Thursday 28th Feb to Saturday 2nd of March) are devoted to a Conference on Model Theory and Model Theoretic algebra.
    http://web.mat.bham.ac.uk/R.W.Kaye/models2002/lms.html
    LMS Regional Meeting and Model Theory, 2002
    On Wednesday 27th February 2002 there will be a Regional Meeting of the London Mathematical Society . This will be followed from Thursday 28th February to Saturday 2nd March by a Conference on Model Theory . Both events take place at The School of Mathematics, University of Birmingham
    Programme
    This two-stage meeting starts on the Wednesday afternoon with a regional meeting for the LMS. The programme for the afternoon is as follows. Arrival and coffee Watson building, Birmingham University Welcome Physics Bridge, 2nd floor, Watson building Peter Neumann (Oxford): "Infinite Jordan Groups" Lecture Room A, Watson Building Tony Gardiner (Birmingham): "Why should the mathematical community care about olympiads?" Lecture Room A, Watson Building Tea Physics Bridge, 2nd floor, Watson building Angus Macintyre (Edinburgh): "Prospects for model theory" Lecture Room A, Watson Building Reception and prize giving for best postgraduate poster Physics Bridge, 2nd floor, Watson building Dinner University of Birmingham staff house *Students displaying a poster are encouraged to arrive between 1pm and 1.30pm if possible to display it in advance of the arrival of other participants.

    44. Faculty At The Mathematics Ph.D. Program At CUNY
    logic and, specifically, model theoretic algebra Room 4432/ 212817-8143 prothmaler@gc.cuny.edu. S. Schoutens, Hans algebraic model theory,
    http://math.gc.cuny.edu/faculty/faculty.html

    Home

    Program

    Faculty

    Listed by Research
    ...
    Admissions
    DOCTORAL FACULTY A B C D ... Z A Anshel, Michael: combinatorial group theory, algebraic cryptography
    Room 4307 / 212-817-8554 mikeat1140 (at) aol.com City College Apter, Arthur: mathematical logic and set theory
    Room 4432 / 212-817-8143 awapter (at) alum.mit.edu Baruch College Artemov, Sergei logic, artificial intelligence, automated deduction and verification, optimal control
    Room 4319/(212) 817-8661 sartemov (at) gc.cuny.edu [Graduate Center] B Baider, Alberto: analysis, dynamical systems, and Hamiltonian systems
    Room 4307 / 212-817-8553 abaider (at) shiva.hunter.cuny.edu Hunter College Basmajian, Ara: hyperbolic geometry; riemann surfaces; geometric structures on manifolds
    Rm. 4307 / 212-817-8553

    45. Colgate: Daniel Saracino (Dan), Director, Division Of Natural Sciences & Mathema
    Interests Model theory, especially model theoretic algebra (existentially complete, quantifiereliminable, and homogeneous structures in algebra) / West
    http://www.colgate.edu/index.aspx?pgID=3400&fID=186&vID=3&dID=0

    46. Handbook Of Algebra - Elsevier
    Model Theoretic algebra. (see also Paul C. Eklof, Whitehead modules in section 3B) Model theory for algebra (M. Prest). Model theory and modules (M. Prest).
    http://www.elsevier.com/wps/find/bookvolume.cws_home/523281/vol3
    Home Site map Elsevier websites Alerts ... Handbook of Algebra Book information Product description Author information and services Ordering information Bibliographic information Conditions of sale Volume information Volume 3 Book-related information Submit your book proposal Other books in same subject area About Elsevier Select your view HANDBOOK OF ALGEBRA
    Volume 3
    Contents

    Preface.
    Outline of the Series.
    List of Contributors.
    Section 1A. Linear Algebra
    Linear algebra over commutative rings (J.A. Hermida-Alonso).
    Correction to the chapter in Volume 1, Matrix functions (L. Rodman).
    Section 2A. Category Theory.
    Monads of sets (E. Manes). Section 2C. Algebraic K-theory. Classical algebraic K-theory: the functors (A. Kuku). Section 2D. Model Theoretic Algebra. (see also Paul C. Eklof, Whitehead modules in section 3B) Model theory for algebra (M. Prest). Model theory and modules (M. Prest). Section 3A. Commutative Rings and Algebras. Monomial algebras and polyhedral geometry (R.H. Villareal). Section 3B. Associative Rings and Algebras. Whitehead modules (P.C. Eklof).

    47. TUD : ACTUAL RESEARCH REPORT - Group 1. Algebra And Logic - Mathematical Logic A
    Model theoretic investigations (Herrmann, Otto) make intramathematical links with algebra and discrete mathematics (Ihringer).
    http://www.tu-darmstadt.de/forschung/bericht/040100.en.tud?style=druck

    48. Linguistics 726 Schedule
    Statement logic, including Syntax and Semantics as algebras with a . to it Regarding the issue of prooftheoretic vs. Model-theoretic in linguistic
    http://people.umass.edu/partee/726_06/schedule.html
    Linguistics 726: Mathematical Linguistics
    Barbara Partee and Vladimir Borschev
    Fall 2006, University of Massachusetts, Amherst
    description schedule and lectures homework book errata ... LING 726 2004 Website SCHEDULE for 2006 as of September 26, 2006 subject to change Time and Place: T Th 1:00 – 2:15, Herter 640. Part 1. Basic notions of set theory Lectures 1-3 , with Homeworks 1-3. September 7, 12, 14 . Sets, subsets, operations on sets. Ordered pairs and Cartesians products. Relations. Functions and their compositions. Properties of relations and classes of relations. Quotient sets, kernel of a relation. Trees (first pass). Homework 2 Solutions (relations and functions) Homework 3 Solutions (Properties of relations) Part 2. Intro to algebra. Lecture 4, Part 1. Algebra, Section1. Signature, algebra in a signature. Isomorphisms, homomorphisms, congruences and quotient algebras. Sep 19, 21 with Homework 4 (due Sep 26). Lecture 4, Part 2 Algebra, Section 2. Lattices, Boolean algebra. Sep 26 , Homework 5 (due Sep 28) Homework 4 Solutions (Algebra 1) Homework 5 Solutions (Lattices and Boolean Algebra) Sept 28, Oct 3:

    49. Algebraically Compact Module - Wikipedia, The Free Encyclopedia
    In abstract algebra, algebraically compact modules, edit References. C.U. Jenzen and H. Lenzing Model Theoretic algebra, Gordon and Breach, 1989
    http://en.wikipedia.org/wiki/Algebraically_compact_module
    var wgNotice = ""; var wgNoticeLocal = ""; var wgNoticeLang = "en"; var wgNoticeProject = "wikipedia";
    Algebraically compact module
    From Wikipedia, the free encyclopedia
    Jump to: navigation search In abstract algebra algebraically compact modules , also called pure-injective modules , are modules that have a certain "nice" property which allows the solution of infinite systems of equations in the module by finitary means.
    Contents
    edit Definitions
    Suppose R is a ring and M is a left R -module. Take two sets I and J , and for every i in I and j in J , an element r ij of R such that, for every i in I , only finitely many r ij are non-zero. Furthermore, take an element m i of M for every i in I . These data describe a system of linear equations in M
    i I
    The goal is to decide whether this system has a solution , i.e. whether there exist elements x j of M for every j in J such that all the equations of the system are simultaneously satisfied. (Note that we do not require that only finitely many of the x j are non-zero here.) Now consider such a system of linear system, and assume that any subsystem consisting of only

    50. @article {Omladic23 February 20010022-4049309, Author
    We first prove the result for the special case in which F is the complex field and then apply the transfer principle in Model Theoretic algebra to extend it
    http://www.ingentaconnect.com/content/els/00224049/2001/00000156/00000002/art001

    51. CURRICULUM VITAE
    1986 Almost Free algebras, Conference on Model Theory. Model Theoretic algebra and Models of Arithmetic, University of Notre Dame, Notre Dame, Indiana.
    http://142.58.12.69/personal/jborwein/mekler_vitae.html
    CURRICULUM VITAE Updated: June 1992 1. Name: MEKLER, Alan Harvey 3. Date of Birth: 28 October 1947 4. Current Rank: Professor 5. Current Contract: (X) Tenured 6. EDUCATIONAL BACKGROUND: Degrees College/University/Institution Field of Study Year B.A. York University, Toronto Mathematics 1969 M.A. York University, Toronto Mathematics 1970 M.Sc. Stanford University, California Mathematics 1971 Ph.D. Stanford University, California Mathematics 1976 ACADEMIC RESEARCH AND INDUSTRIAL EXPERIENCE (List most recent last): Position held Dates Department and Institution Research Associate 1976-78 Math, Carleton University Lecturer 1978-79 Math, University of Toronto Visiting Assistant Professor 1979-80 Math, Univ of Western Ontario Wissenschaft-Mitarbeiter 6/80-9/80 Math, Universitat Essen Assistant Professor 9/80-12/80 Math, Auburn University Assistant Professor 12/80-8/83 Math, Simon Fraser University NSERC Research Fellow Associate Professor 9/83-1986 Math, Simon Fraser University NSERC Research Fellow

    52. Macmillan Publishers New Zealand
    Title, Model theoretic algebra. Author, Jensen, Christian U. Lenzing, Helmut. Publisher, Gordon Breach. Type, Hardback
    http://macmillan.co.nz/getbook/2881247172/showbook
    @import "css/complex.css"; @import "css/complex_vnav.css"; @import "css/complex_hnav.css"; This site will look much better in a browser that supports web standards , but it is accessible to any browser or Internet device.
    Macmillan Publishers New Zealand
    Model theoretic algebra
    ISBN Price Stock Special Order Title Model theoretic algebra Author Jensen, Christian U. Lenzing, Helmut Publisher Type Hardback Year
    Find Similar Items
    Description
    (c) Macmillan Publishers 2004

    53. Preliminary Logic Visitor List: Spring 97
    The speakers will discuss topics including model theoretic algebra, descriptive complexity theory, the history of logic, and random graphs.
    http://www.math.uic.edu/~jbaldwin/logvis.html

    The Department of Mathematics, Statistics, and Computer Science is sponsoring a series of lectures in logic and computer science during the spring semester of 1997. The speakers will discuss topics including model theoretic algebra, descriptive complexity theory, the history of logic, and random graphs. Abstracts of the earlier talks in the series are at the end of this list.
    David Kueker (University of Maryland): April 11-18 TITLE: Forcing, Generics and Infinitary Logics I,II
    ABSTRACT: We use model-theoretic forcing to study the properties, finitary and infinitary, of generic models obtained from smooth classes of finite structures.
    April 15 -. 3:00 PM room tba
    Apr 16 - 3:00 PM room tba
    The intended visit of Angus Macintyre (Oxford University)has been postponed to the Fall. Talks during the week will be in the Science and Engineering Offices Building.
    Wilfrid Sieg (Carnegie Mellon University):
    Colloquium April 17 NOTE DATE CHANGE: TALK on THURSDAY
    Hilbert's Programs: 1917-1922
    Charles Steinhorn (Vassar College) May 12-16
    Spring 97 talks before March 12
    Chris Laskowski (University of Maryland): February 22-25; lecture on 24th

    54. Stevens Inst > Algebraic Cryptography Center > Researchers
    Algorithmic and model theoretic algebra. Mathematical logic and recursion theory. Average and generic computational complexity. Cryptography.
    http://www.acc.stevens.edu/people.php
    Charles V. Schaefer, Jr. School of Engineering and Science Admissions Search People Finder ... Algebraic Cryptography Center
    Algebraic Cryptography Center
    People
    Murray Elder
    Stevens Institute of Technology
    (201) 216-8596, fax: (201) 216-8321
    murrayelder gmail.com
    Generic complexity of combinatorial and group theoretic problems, automata theory, geometric group theory, and problems in stack sorting and pattern avoiding permutations. Robert Gilman
    Department of Mathematical Sciences, Stevens Institute of Technology
    (201) 216-5449, fax: (201) 216-8321
    rgilman stevens.edu
    Group theory and symbolic computations. Andrew Duncan
    Department of Mathematics, School of Mathematics and Statistics, University of Newcastle, UK
    a.duncan ncl.ac.uk Geometric and Combinatorial Group Theory, Low Dimensional Topology, Quantum computation. Delaram Kahrobaei New York City College of Technology, CUNY DKahrobaei CityTech.CUNY.edu Infinite combinatorial and geometric group theory, and their applications in theoretical computer science particularly algebraic cryptography as well as interaction between combinatorics, logic and number theory. Ayan Mahalanobis Department of Mathematical Sciences, Stevens Institute of Technology

    55. OUP: UK General Catalogue
    Model theoretic algebra has witnessed remarkable progress in the last few years. It has found profound applications in other areas of mathematics,
    http://www.oup.com/uk/catalogue/?ci=9780821809433

    56. Chulalongkorn University Library - TJI
    Model theoretic algebra Averaging method (Differential equations). , Supol Durongwatana, advisor
    http://library.car.chula.ac.th:82/search*thx?/dMobile communication systems/dmob

    57. Algebra & Number Theory (category At ISBNdb.com)
    Model theoretic algebra Model theoretic algebra with particular emphasis on fields, rings, modules by Christian U. Jensen and Helmut Lenzing
    http://isbndb.com/c/Library_Shelves/Dewey_Decimal_Classification/500/510/512/ind

    58. The Journal Of Symbolic Logic, Volume 41
    531536 BibTeX Gregory L. Cherlin Model Theoretic algebra. 537-545 BibTeX John T. Baldwin, Donald A. Martin, Robert I. Soare, William W. Tait Meeting
    http://www.informatik.uni-trier.de/~ley/db/journals/jsyml/jsyml41.html
    The Journal of Symbolic Logic , Volume 41
    Volume 41, Number 1, March 1976

    Page 1     1-63 of 63    1