Geometry.net Online Store

Geometry.Net - the online learning center
Home  - Mathematical_Logic - Continuum Hypothesis And Martin's Axiom
  
Images 
Newsgroups
Page 1     1-63 of 63    1 

1. Some Consequences Of Martin S Axiom And The Negation Of The
Some consequences of Martin s axiom and the negation of the Continuum hypothesis. Juichi Shinoda. Source Nagoya Math. J. Volume 49 (1973), 117125.
http://projecteuclid.org/handle/euclid.nmj/1118798877
Log in RSS Title Author(s) Abstract Subject Keyword All Fields FullText more options
  • Home Browse Search ... next
    Some consequences of Martin's axiom and the negation of the continuum hypothesis
    Juichi Shinoda Source: Nagoya Math. J. Volume 49 (1973), 117-125. Primary Subjects: Full-text: Access granted (open access) PDF File (745 KB) Links and Identifiers Permanent link to this document: http://projecteuclid.org/euclid.nmj/1118798877 Mathematical Reviews number (MathSciNet): Zentralblatt Math identifier: back to Table of Contents
    References
    [1] K. Kunen, Inaccessibility properties of cardinals, Doctoral Dissertation, Stanford University, 1968. [2] D. A. Martin and R. M. Solovay, Internal Cohen extensions, Annals of Math. Logic vol. 2 (1970) 143-178. Mathematical Reviews (MathSciNet): Zentralblatt MATH: [3] W. Sierpinski, Hypothese du contnu, Second Edition (Chelsea, New York, 1956). Nagoya University Mathematical Reviews (MathSciNet): previous next
    Nagoya Mathematical Journal

2. JSTOR Higher Souslin Trees And The Generalized Continuum Hypothesis.
Generalized Martin s axiom and Souslin s hypothesis for higher cardinals. axiom (MA) together with the negation of the Continuum hypothesis (CH) implies
http://links.jstor.org/sici?sici=0022-4812(198406)49:2<663:HSTATG>2.0.CO;2-D

3. PlanetMath: A Shorter Proof: Martin's Axiom And The Continuum Hypothesis
This is version 8 of a shorter proof Martin s axiom and the Continuum hypothesis, born on 200308-24, modified 2004-03-15.
http://planetmath.org/encyclopedia/SomethingRelatedToMartinsAxiomAndTheContinuum
(more info) Math for the people, by the people. Encyclopedia Requests Forums Docs ... RSS Login create new user name: pass: forget your password? Main Menu sections Encyclop¦dia
Papers

Books

Expositions

meta Requests
Orphanage

Unclass'd

Unproven
...
Classification

talkback Polls
Forums
Feedback Bug Reports downloads Snapshots PM Book information News Docs Wiki ChangeLog ... About a shorter proof: Martin's axiom and the continuum hypothesis (Proof) This is another, shorter, proof for the fact that always holds. Let be a partially ordered set and be a collection of subsets of . We remember that a filter on is -generic if for all which are dense in is dense in , then for every there's a such that Let be a partially ordered set and a countable collection of dense subsets of . Then there exists a -generic filter on . Moreover, it could be shown that for every there's such a -generic filter with Proof . Let be the dense subsets in . Furthermore let . Now we can choose for every an element such that and . If we now consider the set , then it is easy to check that is a -generic filter on and obviously. This completes the proof.

4. A Shorter Proof: Martin's Axiom And The Continuum Hypothesis
This is another, shorter, proof for the fact that always holds. Let be a partially ordered set and be a collection of subsets of P. We remember
http://nsdl.org/resource/2200/20061003062432262T
Skip to Main Content Skip to Footer Links This resource was selected by the National Science Digital Library. Search for more NSDL resources Return to top of the page View this resource in its own window View more information about this resource This resource is found in the following collection(s). Click on the collection logo for more information. Close this window
Collection Name: PlanetMath.org: Math for the people, by the people Collection Description: A collaborative online encyclopedia of mathematics, intended for all levels. The stress is on peer review, rigor, openness, pedagogy, real-time content, interlinked content, and community-drivenness. Subject(s): MathematicsDictionaries
Mathematics
Collection Information: Title PlanetMath.org: Math for the people, by the people
Subject Keyword(s) MathematicsDictionaries
Mathematics
Description A collaborative online encyclopedia of mathematics, intended for all levels. The stress is on peer review, rigor, openness, pedagogy, real-time content, interlinked content, and community-drivenness.
Resource Type Collection
Text
Resource Format text/html
Link http://planetmath.org

5. Book's Preface
The book is finished with Section 9.5 in which it is proved the simultaneous consistency of Martin s axiom and the negation of Continuum hypothesis.
http://www.math.wvu.edu/~kcies/Preface.html
Set Theory for the Working Mathematician
by
Krzysztof Ciesielski
London Math Society Student Texts
Cambridge University Press, 1997.
Hardback ISBN 0-521-59441-3, price $59.95; paperback ISBN 0-521-59465-0, price $19.95.
To order call 1-800-872-7423 or link to Cambridge University Press order page.
Preface
The course is presented as a textbook that is appropriate for either a lower-level graduate course or an advanced undergraduate course. However, the potential readership should also include mathematicians whose expertise lies outside set theory but who would like to learn more about modern set-theoretic techniques that might be applicable in their field.
The reader of this text is assumed to have a good understanding of abstract proving techniques, and of the basic geometric and topological structure of the n-dimensional Euclidean space R n . In particular, a comfort in dealing with the continuous functions from R n into R n is assumed. A basic set-theoretic knowledge is also required. This includes a good understanding of the basic set operations (union, intersection, Cartesian product of arbitrary families of sets, and difference of two sets), abstract functions (the operations of taking images and preimages of sets with respect to functions), and elements of the theory of cardinal numbers (finite, countable, and uncountable sets.) Most of this knowledge is included in any course in analysis, topology, or algebra. These prerequisites are also discussed briefly in Part I of the text.

6. Uri Abraham
Assuming the Continuum hypothesis there is an inseparable sequence of length $\omega_1$ that contains no Lusin subsequence, while if Martin s axiom and
http://www.cs.bgu.ac.il/~abraham/math.html
Uri Abraham
This page contains papers in set theory with abstracts. It seems that html is not very well suited to math expressions, and so I've used the $latex$ notations.
I have a different homepage for CS papers: cs homepage
  • Infinite games on finite sets.
    with Rene Schipperus. Israel J. of Math. 159 (2007) 205219. ( pdf.
  • On Jakovlev spaces.
    with Isac Gorelic and Istvan Juhasz. Israel Journal of Mathematics 152 (2006) 205219. ( pdf.
  • with Stefan Geschke. Uri Abraham, Stefan Geschke, Proc. Amer. Math. Soc. 132 (2004), 3367-3377. ( dvi, 10pp
  • Ladder gaps over stationary sets.
    with S. Shelah. J. Symbolic Logic 69 (2004), no 2, 518-532. ( dvi 21 pp
  • Lusin sequences under CH and under Martin's Axiom.
    with Saharon Shelah.
    Fundamenta Mathematicae 169 (2001), pp 97-103. ps 8 pp
  • Hausdorff's theorem for posets that satisfy the finite antichain property.
    with Robert Bonnet.
    Fundamenta Mathematicae , 159 (1999) pp. 5169. ( ps 24 pp abstract
  • with Saharon Shelah.
    Archive for Mathematical Logic compressed ps 16 a link to Springer's Archive for Mathematical Logic version See also Coding with Ladders for an extension which does not require an inaccessible cardinal.
  • 7. Springer Online Reference Works
    The existence of a Luzin space on the real line follows from the Continuum hypothesis. From the negation of the Continuum hypothesis and Martin s axiom (cf.
    http://eom.springer.de/l/l061110.htm

    Encyclopaedia of Mathematics
    L
    Article referred from
    Article refers to
    Luzin space
    An uncountable topological -space without isolated points in which every nowhere-dense subset is countable. The existence of a Luzin space on the real line follows from the continuum hypothesis . From the negation of the continuum hypothesis and Martin's axiom (cf. Suslin hypothesis axiom of choice . The existence of metrizable Luzin spaces has been proved under very general assumptions about the place of the cardinality of the continuum in the scale of alephs. Any Luzin space that lies in a separable metric space has the following property: For any sequence of positive numbers there is a sequence of sets such that and , where is the diameter of the set . This property is invariant under continuous mappings. Any continuous image of a Luzin space lying in -weight and with the cardinality of the continuum.
    References
    C.R. Acad. Sci. Paris
    B.A. Efimov
    Comments
    Three slightly different definitions of Luzin space are still in use (apart from whether they must be or ): An uncountable space all of whose nowhere-dense sets are countable, with 1) no isolated points; or 2) at most

    8. Hilbert's First And Second Problems And The Foundations Of Mathematics By Peter
    D.H. Fremlin, Consequences of Martin s axiom, Cambridge University Press, 1984. inter alia, why Gödel believed the Continuum hypothesis to be dubious
    http://at.yorku.ca/t/a/i/c/52.htm
    Topology Atlas Document # taic-52 Topology Atlas Invited Contributions vol. 9, no. 3 (2004) 6 pp.
    Hilbert's first and second problems and the foundations of mathematics
    Peter J. Nyikos
    Department of Mathematics
    University of South Carolina
    Columbia, SC 29208 USA
    http://www.math.sc.edu/~nyikos
    In 1900, David Hilbert gave a seminal lecture in which he spoke about a list of unsolved problems in mathematics that he deemed to be of outstanding importance. The first of these was Cantor's continuum problem, which has to do with infinite numbers with which Cantor revolutionised set theory. The smallest infinite number, , `aleph-nought,' gives the number of positive whole numbers. A set is of this cardinality if it is possible to list its members in an arrangement such that each one is encountered after a finite number (however large) of steps. Cantor's revolutionary discovery was that the points on a line cannot be so listed, and so the number of points on a line is a strictly higher infinite number ( c , `the cardinality of the continuum') than . Hilbert's First Problem asks whether any infinite subset of the real line is of one of these two cardinalities. The axiom that this is indeed the case is known as the Continuum Hypothesis ( CH This problem had unexpected connections with Hilbert's Second Problem (and even with the Tenth, see the article by M. Davis and the comments on the book edited by F. Browder). The Second Problem asked for a proof of the consistency of the foundations of mathematics. Some of the flavor of the urgency of that problem is provided by the following passage from an article by S.G. Simpson in the same volume of JSL as the article by P. Maddy:

    9. CiteULike: Axioms Of Symmetry: Throwing Darts At The Real Number Line
    We will also show why Martin s axiom must be false, and we will prove the extension of proof of the negation of Cantor s Continuum hypothesis (CH).
    http://www.citeulike.org/user/rwebb/article/2088308
    Register Log in FAQ
    CiteULike
    Journals
    Groups
    • Search groups Profile Library Watchlist ... Import
      Axioms of Symmetry: Throwing Darts at the Real Number Line
      Authors
      Online Article
      Note: You or your institution must have access rights to this article. CiteULike will not help you view an online article which you aren't authorized to view.
      Copy-and-Pasteable Citation
      The Journal of Symbolic Logic , Vol. 51, No. 1. (1986), pp. 190-200. Citation format: Plain APA Chicago Elsevier Harvard MLA Nature Oxford Science Turabian Vancouver
      rwebb's tags for this article
      Everyone's tags for this article
      Abstract
      BibTeX
      Note: You may cite this page as: http://www.citeulike.org/user/rwebb/article/2088308 EndNote BibTeX
      rwebb's tags
      All tags in rwebb's library Filter: distance distributed esn hierarchical ... sensory CiteULike organises scholarly (or academic) papers or literature and provides bibliographic (which means it makes bibliographies) for universities and higher education establishments. It helps undergraduates and postgraduates. People studying for PhDs or in postdoctoral (postdoc) positions. The service is similar in scope to EndNote or RefWorks or any other reference manager like BibTeX, but it is a social bookmarking service for scientists and humanities researchers.

    10. Topics In Discovering Modern Set Theory. II.
    Applications of the Continuum hypothesis. Luzin sets and Sierpinski sets. Martin s axiom. Consistency of the Suslin hypothesis. Solovay s Lemma.
    http://www.math.ohiou.edu/~just/anno2.html
    Discovering Modern Set Theory
    Winfried Just and Martin Weese
    Topics covered in Volume II
    From the Preface:
    "Our aim is to present the most important set-theoretic techniques that have found applications outside of set theory. We think of Volume II as a natural continuation of Volume I of the same text, but it is sufficiently self-contained to be studied separately. The main prerequisite is a knowledge of basic naive and axiomatic set theory. Moreover, some knowledge of mathematical logic and general topology is indispensible for reading this volume. A minicourse in mathematical logic was given in Chapters 5 and 6 of Volume I, and we include an appendix on general topology at the end of this volume. Our terminology is fairly standard. For the benefit of those readers who learned their basic set theory from a different source than our Volume I we include a short section on somewhat idiosyncratic notations introduced in Volume I. In particular, some of the material on mathematical logic covered in Chapter 5 is briefly reviewed. The book can be used as a text in the classroom as well as for self-study."
    Chapter 13. Filters and Ideals in Partial Orders

    11. Axiomatic Set Theory: Encyclopedia II - Axiomatic Set Theory - Independence In Z
    The constructible universe satisfies the Generalized Continuum hypothesis, the Diamond Principle, Martin s axiom and the Kurepa hypothesis.
    http://www.experiencefestival.com/a/Axiomatic_set_theory_-_Independence_in_ZFC/i
    Articles Archives Start page News Contact Community General Newsletter Contact information Site map Most recommended Search the site Archive Photo Archive Video Archive Articles Archive More ... Wisdom Archive Body Mind and Soul Faith and Belief God and Religion ... Yoga Positions Site map 2 Site map
    Hi! Below are some links that have been popular among the visitors of Global Oneness.
    Check them out!
    Jonas
    Axiomatic set theory - Independence in ZFC
    Axiomatic set theory - Independence in ZFC: Encyclopedia II - Axiomatic set theory - Independence in ZFC
    Many important statements are independent of ZFC, see the list of statements undecidable in ZFC. The independence is usually proved by forcing, that is, it is shown that every countable transitive model of ZFC (plus, occasionally, large cardinal axioms) can be expanded to satisfy the statement in question, and (through a different expansion) its negation. An independence proof by forcing automatically proves independence from arithmetical statements, other concrete statements, and large cardinal axioms. Some statements independent of ZFC can ...
    See also:
    Axiomatic set theory, Axiomatic set theory - The origins of rigorous set theory, Axiomatic set theory - Axioms for set theory, Axiomatic set theory - Independence in ZFC, Axiomatic set theory - Set theory ZFC foundations for mathematics, Axiomatic set theory - Well-foundedness and hypersets, Axiomatic set theory - Objections to set theory

    12. Topology And Forcing V I Malykhin RUSS MATH SURV, 1983, 38 (1), 77
    5, Cohen P J, Set theory and the Continuum hypothesis, (W. A. Benjamin, 9, Malykhin V I, The equivalence of Martin s axiom and a purely topological
    http://www.turpion.org/php/reference.phtml?journal_id=rm&paper_id=3382&volume=38

    13. Paul Joseph Cohen (American Mathematician) -- Britannica Online Encyclopedia
    axiom of choice and Continuum hypothesis. Two phenomenological studies by major philosophers are Martin More results
    http://www.britannica.com/eb/topic-124547/article-9085726
    Already a member? LOGIN Encyclopædia Britannica - the Online Encyclopedia Home Blog Advocacy Board ... Free Trial Britannica Online Content Related to
    this Topic Shopping
    Revised, updated, and still unrivaled.
    2008 Britannica Ultimate DVD/CD-ROM

    The world's premier software reference source.
    Great Books of the Western World

    The greatest written works in one magnificent collection. Visit Britannica Store
    Paul Joseph Cohen (American mathematician)
    A selection of articles discussing this topic.
    Main article: Paul Joseph Cohen
    American mathematician, who was awarded the Fields Medal in 1966 for his proof of the independence of the continuum hypothesis from the other axioms of set theory.
    axiom of choice and continuum hypothesis
    • axiom of choice and continuum hypothesis (in logic, history of: 20th-century set theory)
      ...set theories with Urelementen very early; the independence of the axiom of choice in NBG or ZF set theories was one of the major outstanding problems in 20th-century mathematical logic until Paul Cohen showed in 1963 that the axiom of choice was indeed independent of the other standard axioms for set theory.
      axiom of choice and continuum hypothesis (in axiom of choice)
      ...are consistent, then they do not disprove the axiom of choice. That is, the result of adding the axiom of choice to the other axioms (ZFC) remains consistent. Then in 1963 the American mathematician Paul Cohen completed the picture by showing, again under the assumption that ZF is consistent, that ZF does not yield a proof of the axiom of choice; that is, the axiom of choice is independent.

    14. Reflexive Subgroups Of The Baer-Specker Group And Martin's Axiom
    models of set theory, respectively of the special Continuum hypothesis (CH). We will use Martin s axiom to find reflexive modules with the above
    http://adsabs.harvard.edu/abs/2000math......9062G
    Sign on
    Smithsonian/NASA ADS arXiv e-prints Abstract Service
    Find Similar Abstracts (with default settings below
    arXiv e-print (arXiv:math/0009062)
    Also-Read Articles Reads History
    Translate Abstract
    Title:
    Reflexive subgroups of the Baer-Specker group and Martin's axiom Authors:
    Publication:

    eprint arXiv:math/0009062 Publication Date:
    Origin:

    ARXIV Keywords:
    Logic, Rings and Algebras, Commutative Algebra, 13C05, 13C10, 13C13, 20K15, 20K25, 20K30, 03E05, 03E35 Bibliographic Code:
    Abstract
    Bibtex entry for this abstract Preferred format for this abstract (see Preferences
    Find Similar Abstracts:
    Use: Authors Title Keywords (in text query field) Abstract Text Return: Query Results Return items starting with number Query Form Database: Astronomy Physics arXiv e-prints
    Smithsonian/NASA ADS Homepage
    ADS Sitemap Query Form Basic Search ... FAQ

    15. PlanetMath 2007-06-18 Snapshot: G
    generic (defined in a shorter proof Martin s axiom and the Continuum hypothesis). generic generically (defined in generic). generic manifold
    http://202.41.85.103/manuals/planetmath/G.html
    G Gabor frame (defined in Gabor frame Gabor frame Gabor super-frame (defined in Gabor frame Gabriel Filter (defined in multiplicative filter Gagliardo Nirenberg inequality Sobolev inequality gale (defined in gale gale Galois closure Galois cohomology (defined in Galois representation Galois conjugate Galois connection Galois connexion Galois connection Galois correspondence Galois connection Galois correspondence fundamental theorem of Galois theory Galois covering regular covering Galois criterion for solvability of a polynomial by radicals Galois extension Galois field finite field Galois group Galois group of a cover (defined in deck transformation Galois group of the compositum of two Galois extensions Galois is not transitive Galois representation Galois-theoretic derivation of the cubic formula ... Galois theory fundamental theorem of Galois theory game game (defined in game Game of Fifteen 15 Puzzle Game of Life game-theoretical quantifier game-theoretic quantifier (defined in game-theoretical quantifier game theory gamma distribution gamma random variable gamma function gamma function gamma-function gamma function gamma function (multivariate complex) (defined in multivariate gamma function (complex-valued) gamma function (multivariate real) (defined in multivariate gamma function (real-valued) Gamma L (defined in semilinear transformation gamma random variable Gao Dena Donald Knuth Garfield's proof of Pythagorean theorem Gaston Julia Gaston Maurice Julia Gaston Julia gauge (defined in generalized Riemann integral gauge group gauge integral generalized Riemann integral

    16. \documentclass{article} \usepackage{amssymb} \begin{document} Both
    \documentclass{article} \usepackage{amssymb} \begin{document} Both the Continuum hypothesis and Martin s axiom allow inductive constructions to continue in
    http://basilo.kaist.ac.kr/API/?MIval=db_jour_tex&con=110666

    17. JSTOR Martin S Axiom And The Continuum
    The Continuum hypothesis (CH) says that every infinite set of reals .. MARTIN S axiom and THE Continuum 379 is finite, while if kVA then X n Cfl+k is
    http://dx.doi.org/10.2307/2275837

    18. Re: Continuum Hypothesis
    If one DENIES the Continuum hypothesis, and ZF+MA is consistent with not AC Since the proof given uses Martin s axiom and not the stronger CH,
    http://sci.tech-archive.net/Archive/sci.logic/2007-08/msg00397.html
    Re: Continuum hypothesis
    • From (Daryl McCullough) Date : 20 Aug 2007 13:28:53 -0700
    Alan Smaill says...
    wrote:
    Bell's Theorem proves that no measurable function f can possible
    satisfy this constraint. However, Pitowsky proved that if one
    assumes the continuum hypothesis, one can construct a nonmeasurable
    function that satisfies this constraint.
    One line of the truth table still has not been completed here.
    If one DENIES the continuum hypothesis, can there still
    exist a NON-constructible nonmeasurable function that
    satisfies the constraint? Or is the truth of the CH necessary
    to the existence of the non-measurable function at all (regardless of whether it can be proven to exist)? Since the proof given uses Martin's Axiom and not the stronger CH, and ZF+MA is consistent with not AC (assuming ZF consistent, presumably), the existence of such functions is consistent with not CH. As I understand Pitowsky's construction, what is needed for the construction to go through is something along the lines of this axiom: The continuum hypothesis of course implies this (because if you well-order the reals with order type omega-1, then the

    19. Front: [math.LO/9807178] Lusin Sequences Under CH And Under Martin's Axiom
    Abstract Assuming the Continuum hypothesis there is an inseparable sequence of length omega_1 that contains no Lusin subsequence, while if Martin s axiom
    http://front.math.ucdavis.edu/9807.5178
    Front for the arXiv Mon, 24 Dec 2007
    Front
    math LO math.LO/9807178 search register submit
    journals
    ... iFAQ math.LO/9807178 Title: Lusin sequences under CH and under Martin's Axiom
    Authors: Uri Abraham , Saharon Shelah
    Categories: math.LO Logic
    Report number: Shelah [Sh:537]
    Abstract: Assuming the continuum hypothesis there is an inseparable sequence of length omega_1 that contains no Lusin subsequence, while if Martin's Axiom and the negation of CH is assumed then every inseparable sequence (of length omega_1) is a union of countably many Lusin subsequences.
    Owner: Shelah Office
    Version 1: Wed, 15 Jul 1998 00:00:00 GMT
    - for questions or comments about the Front
    arXiv contact page
    - for questions about downloading and submitting e-prints

    20. Seminari De Lògica De Barcelona. Sesions Anteriors
    Omegalogic and the Continuum hypothesis; 17.03.99 Josep Maria Font The bounded Martin s axiom; 21.10.98 Joan Bagaria (Universitat de Barcelona)
    http://www.ub.es/slb/Past.html
    Sessions anteriors/Sesiones anteriores/Previous sessions
  • Panteleimon Eleftheriou (Universidad de Barcelona)
    Groups definable in linear o-minimal structures.
    Alexander Berenstein
    Pares bellos de estructuras o-minimales.
    Thomas Johnstone (The City University of New York)
    Indestructible cardinals and forcing axioms.
    Martin Koerwien
    Complexity of isomorphism for countable models of omega-stable theories.
    Matt Foreman (University of California at Irvine)
    Generic elementary embeddings.

    Pseudofinite fields and random hypergraphs.
    Joerg Brendle (Kobe University)
    Mad families.
    John T. Baldwin (University of Illinois at Chicago)
    Abstract elementary classes.
    Anuj Dawar (University of Cambridge)
    Finite model theory of well-behaved finite structures.
    Martin D. Davis (New York University)
    The myth of hypercomputation.
    Dugald Macpherson (University of Leeds) Asymptotics of definable sets in finite structures.
    (University of Auckland (New Zealand)) Automata presentable Boolean algebras.
    Hans Adler Forking and thorn-forking.
    Piotr Koszmider Boolean algebras and projections in Banach spaces c(K). Set-theoretic aspects.
  • 21. Sachgebiete Der AMS-Klassifikation: 00-09
    ordinal definability, and related notions 03E47 Other notions of settheoretic definability 03E50 Continuum hypothesis and Martin s axiom,
    http://www.math.fu-berlin.de/litrech/Class/ams-00-09.html
    Sachgebiete der AMS-Klassifikation: 00-09
    nach 90-99 Weiter nach 10-19 Suche in allen Klassifikationen
    01-XX 03-XX 04-XX 05-XX 06-XX 08-XX
    nach 90-99 Weiter nach 10-19 Suche in allen Klassifikationen

    22. IngentaConnect Residual Measures In Locally Compact Spaces
    Results on the influence of Martin s axiom and the Continuum hypothesis on the existence of residual and normal measures in locally compact spaces are
    http://www.ingentaconnect.com/content/els/01668641/2000/00000108/00000003/art001
    var tcdacmd="dt";

    23. 03Exx
    03E50, Continuum hypothesis and Martin s axiom. 03E55, Large cardinals. 03E60, Determinacy principles. 03E65, Other hypotheses and axioms
    http://www.impan.gov.pl/MSC2000/03Exx.html
    Set theory Partition relations Ordered sets and their cofinalities; pcf theory Other combinatorial set theory Ordinal and cardinal numbers Descriptive set theory
    [See also Cardinal characteristics of the continuum Other classical set theory (including functions, relations, and set algebra) Axiom of choice and related propositions Axiomatics of classical set theory and its fragments Consistency and independence results Other aspects of forcing and Boolean-valued models Inner models, including constructibility, ordinal definability, and core models Other notions of set-theoretic definability Continuum hypothesis and Martin's axiom Large cardinals Determinacy principles Other hypotheses and axioms Nonclassical and second-order set theories Fuzzy set theory Applications of set theory None of the above, but in this section

    24. Citebase - Lusin Sequences Under CH And Under Martin's Axiom
    Assuming the Continuum hypothesis there is an inseparable sequence of length omega1 that contains no Lusin subsequence, while if Martin s axiom and the
    http://www.citebase.org/cgi-bin/citations?id=oai:arXiv.org:math/9807178

    25. CMS - Search Journals
    Todorcevic, Stevo , Remarks on Martin s axiom and the Continuum hypothesis , Canadian Journal of Mathematics, Vol 43, No , 832-851.
    http://www.journals.cms.math.ca/cgi-bin/vault/search?_query=martin&journal=C

    26. The Continuum Hypothesis
    Cohen used a technique called forcing to prove the independence in set theory of the axiom of choice and of the generalised Continuum hypothesis.
    http://www.humboldt.edu/~mef2/Courses/m446s02n2.html
    The Continuum Hypothesis Notes for Math 446
    M. Flashman Spring, 2002 I. Background: Cantor 1845-1918: Investigation of discontinuities with Fourier series and Set Theory Beginnings.
  • Any infinite subset of the natural numbers or the integers is countable. The rational numbers are a countable set. "Godel counting" argument. The algebraic numbers are countable.

  • [ Another first type of diagonal argument.] 1874
  • Cantor's proof that the number of points on a line segment are uncountable. (1874) A decimal based proof that there is an uncountable set of real numbers.(similar to 1891 proof) There is no onto function from R, the set of real numbers, to P(R), the set of all subsets of the real number. There are sets which are larger than the reals. The rational numbers between and 1 have "measure" zero. Any countable set of real numbers has "measure" zero.

  • II. The XXth Century: An Age of Exploration and Discovery.
    Hilbert:
    (Finitistic Formalization of Arithmetic)
    The continuum hypothesis problem was the first of Hilbert's famous 23 problems delivered to the Second International Congress of Mathematicians in Paris in 1900. Hilbert's famous speech The Problems of Mathematics challenged (and still today challenge) mathematicians to solve these fundamental questions Brouwer: (1881-1966) (Rejection of the law of excluded middle for infinite sets) He rejected in mathematical proofs the Principle of the Excluded Middle, which states that any mathematical statement is either true or false. In 1918 he published a set theory, in 1919 a measure theory and in 1923 a theory of functions all developed without using the Principle of the Excluded Middle.

    27. HeiDOK
    03E50 Continuum hypothesis and Martin s axiom ( 0 Dok. ) 03E55 Large cardinals ( 0 Dok. ) 03E60 Determinacy principles ( 0 Dok.
    http://archiv.ub.uni-heidelberg.de/volltextserver/msc_ebene3.php?zahl=03E&anzahl

    28. News | TimesDaily.com | TimesDaily | Florence, Alabama (AL)
    The Continuum hypothesis and the axiom of choice were among the first Martin, D. (1976). Hilbert s first problem the Continuum hypothesis, in
    http://www.timesdaily.com/apps/pbcs.dll/section?category=NEWS&template=wiki&text

    29. Infinite Ink: The Continuum Hypothesis By Nancy McGough
    4.3.2.1 Martin s axiom A Weak Version of CH; 4.3.2.3 The Singular Cardinal hypothesis . AC, The axiom of Choice. CH, The Continuum hypothesis
    http://www.ii.com/math/ch/

    mathematics
    T HE C ONTINUUM
    H YPOTHESIS
    By Nancy McGough nm noadsplease.ii.com
  • Overview
    • 1.1 What is the Continuum Hypothesis?
    • 1.2 Current Status of CH
  • Alternate Overview
  • Assumptions, Style, and Terminology
    • 2.1 Assumptions
      • 2.1.1 Audience Assumptions
      • 2.1.2 Mathematical Assumptions
    • 2.2 Style
    • 2.3 Terminology
      • 2.3.1 The Word "continuum"
      • 2.3.2 Ordered Sets
      • 2.3.3 More Terms and Notation
    • Mathematics of the Continuum and CH
      • 3.1 Sizes of Sets: Cardinal Numbers
        • aleph c aleph
        • 3.1.2 CH and GCH
        • 3.1.3 Sample Cardinalities
      • 3.2 Ordering Sets: Ordinal Numbers
      • 3.3 Analysis of the Continuum
        • 3.3.1 Decomposing the Reals
        • 3.3.2 Characterizing the Reals
        • 3.3.3 Characterizing Continuity
      • 3.4 What ZFC Does and Does Not Tell Us About c
    • Metamathematics and CH
      • 4.1 Consistency, Completeness, and Compactness of ...
        • 4.1.1 a Logical System
        • 4.1.2 an Axiomatic Theory
      • 4.2 Models of ...
        • 4.2.1 Real Numbers
        • 4.2.2 Set Theory
          • 4.2.2.1 Inner Models
          • 4.2.2.2 Forcing and Outer Models
        • 4.3 Adding Axioms to Zermelo Fraenkel Set Theory
          • 4.3.1 Axioms that Imply CH or GCH
            • 4.3.1.1 Explicitly Adding CH or GCH
            • 4.3.1.2 V=L: Shrinking the Set Theoretic Universe
  • 30. Sci.math FAQ: The Continuum Hypothesis
    sci.math FAQ The Continuum hypothesis Various forcing axioms (e.g. Martin s axiom), which are ``maximality principles (in the sense of (2) above),
    http://www.faqs.org/faqs/sci-math-faq/AC/ContinuumHyp/
    Usenet FAQs Search Web FAQs Documents ... RFC Index
    sci.math FAQ: The Continuum Hypothesis
    Newsgroups: sci.math alopez-o@neumann.uwaterloo.ca alopez-o@barrow.uwaterloo.ca Tue Apr 04 17:26:57 EDT 1995 Rate this FAQ N/A Worst Weak OK Good Great Related questions and answers
    Usenet FAQs
    Search Web FAQs ... RFC Index
    Send corrections/additions to the FAQ Maintainer:
    alopez-o@neumann.uwaterloo.ca Last Update May 13 2007 @ 00:24 AM

    31. Martin's Axiom - Wikipedia, The Free Encyclopedia
    In the mathematical field of set theory, Martin s axiom, named after Donald A. Martin MA together with the negation of the Continuum hypothesis implies
    http://en.wikipedia.org/wiki/Martin's_axiom
    var wgNotice = ""; var wgNoticeLocal = ""; var wgNoticeLang = "en"; var wgNoticeProject = "wikipedia";
    Martin's axiom
    From Wikipedia, the free encyclopedia
    Jump to: navigation search In the mathematical field of set theory Martin's axiom , named after Donald A. Martin , is a statement which is independent of the usual axioms of ZFC set theory . It is implied by the continuum hypothesis cardinality of the continuum , behave roughly like . The intuition behind this can be understood by studying the proof of the Rasiowa-Sikorski lemma . More formally it is a principle that is used to control certain forcing arguments. The various statements of Martin's axiom typically take two parts. MA( k ) is the assertion that for any partial order P satisfying the countable chain condition (hereafter ccc ) and any family D of dense sets in P D k , there is a filter F on P such that F ∩ d is non- empty for every d ε D . MA is then the statement that MA( k ) holds for every k less than the continuum. (It is a theorem of ZFC that MA( ) fails.) Note that, in this case (for application of ccc), an antichain is a subset A of P such that any two distinct members of A are incompatible (two elements are said to be compatible if there exists a common element below both of them in the partial order). This differs from, for example, the notion of antichain in the context of

    32. The Continuum Hypothesis
    Various forcing axioms (e.g. Martin s axiom), which are ``maximality principles (in the Nancy McGough s *Continuum hypothesis article* or its *mirror*.
    http://www.cs.uwaterloo.ca/~alopez-o/math-faq/node71.html
    Next: Formulas of General Interest Up: Axiom of Choice and Previous: Cutting a sphere into
    The Continuum Hypothesis
    A basic reference is Godel's ``What is Cantor's Continuum Problem?", from 1947 with a 1963 supplement, reprinted in Benacerraf and Putnam's collection Philosophy of Mathematics. This outlines Godel's generally anti-CH views, giving some ``implausible" consequences of CH. "I believe that adding up all that has been said one has good reason to suspect that the role of the continuum problem in set theory will be to lead to the discovery of new axioms which will make it possible to disprove Cantor's conjecture." At one stage he believed he had a proof that from some new axioms, but this turned out to be fallacious. (See Ellentuck, ``Godel's Square Axioms for the Continuum", Mathematische Annalen 1975.) Maddy's ``Believing the Axioms", Journal of Symbolic Logic 1988 (in 2 parts) is an extremely interesting paper and a lot of fun to read. A bonus is that it gives a non-set-theorist who knows the basics a good feeling for a lot of issues in contemporary set theory. Most of the first part is devoted to ``plausible arguments" for or against CH: how it stands relative to both other possible axioms and to various set-theoretic ``rules of thumb". One gets the feeling that the weight of the arguments is against CH, although Maddy says that many ``younger members" of the set-theoretic community are becoming more sympathetic to CH than their elders. There's far too much here for me to be able to go into it in much detail.

    33. Math Forum - Ask Dr. Math
    THE Continuum hypothesis A basic reference is Godel s What is Cantor s Continuum Various forcing axioms (e.g. Martin s axiom), which are maximality
    http://mathforum.org/library/drmath/view/51437.html

    Associated Topics
    Dr. Math Home Search Dr. Math
    The Continuum Hypothesis
    Date: Wed, 24 May 1995 09:04:05 +0800 From: SheparD Subject: Math Problem Although I am not a K12 type person my daughter is. She is the one with the math problem, but I am the one with the internet connection. But really it IS me with the problem... I volunteered to assist her with an essay assignment and I thought to retrieve some information from the net. But, alas, I can find no information on the net. I would only like to have you point me in the right direction, if you would. The problem: (or question as it may be) "The continuum theory, what is it and has it been resolved?" I would be grateful if you could provide any assistance to me. Thanks for your time, David Date: 9 Jun 1995 10:25:29 -0400 From: Dr. Ken Subject: Re: Math Problem Hello there! I'm sorry it's taken us so long to get back to you. If you're still interested, here's something I found in the Frequently-Asked-Questions for the sci.math newsgroup. If you want to look in the site yourself sometime, the site name is ftp.belnet.be (you can log in with the user name "anonymous") and this file's name is /pub/usenet-faqs/usenet-by-hierarchy/sci/math/ sci.math_FAQ:_The_Continuum_Hypothesis I found it by searching FAQs at the site http://mailserv.cc.kuleuven.ac.be/faq/faq.html

    34. [math/0009062] Reflexive Subgroups Of The Baer-Specker Group And Martin's Axiom
    455, Problem 12) under the set theoretical hypothesis of We will use Martin s axiom to find reflexive modules with the above decomposition which are
    http://arxiv.org/abs/math/0009062
    arXiv.org math
    Search or Article-id Help Advanced search All papers Titles Authors Abstracts Full text Help pages
    Full-text links: Download:
    Citations p revious n ... ext
    Mathematics > Logic
    Title:
    Authors: Saharon Shelah (Submitted on 6 Sep 2000) Abstract: In two recent papers ( math.LO/0003164 and math.LO/0003165 Subjects: Logic (math.LO) ; Commutative Algebra (math.AC); Rings and Algebras (math.RA) MSC classes: Report number: Shelah [GbSh:727] Cite as: arXiv:math/0009062v1 [math.LO]
    Submission history
    From: Saharon Shelah's Office [ view email
    Wed, 6 Sep 2000 18:33:24 GMT (43kb,S)
    Which authors of this paper are endorsers?
    Link back to: arXiv form interface contact

    35. [FOM] Continuum Hypothesis
    1) Do you believe that the Continuum hypothesis is true, or false? . of Martin s Maximum or axiom (*), but the arguments themselves use distinct
    http://cs.nyu.edu/pipermail/fom/2003-May/006611.html
    [FOM] Continuum Hypothesis
    Paul Larson larson at ime.usp.br
    Mon May 19 18:02:41 EDT 2003 1) Do you believe that the continuum hypothesis is true, or false? 2) Is there any general consensus amongst the mathematical/FOM community regarding the truth or falsity of CH? 3) What are the most important recent developments post-Cohen which have contributed to this consensus (or lack thereof)? Have set-theorists proposed any plausible axioms which might decide CH? Have any consequences of CH been discovered which either strongly support or strongly undermine it? More information about the FOM mailing list

    36. 03E: Set Theory
    Natural axioms which imply the negation of Continuum hypothesis; How does (Set Theory axiom) V=L prove the Continuum hypothesis?
    http://www.math.niu.edu/~rusin/known-math/index/03EXX.html
    Search Subject Index MathMap Tour ... Help! ABOUT: Introduction History Related areas Subfields
    POINTERS: Texts Software Web links Selected topics here
    03E: Set theory
    Introduction
    Naive set theory considers elementary properties of the union and intersection operators Venn diagrams, the DeMorgan laws, elementary counting techniques such as the inclusion-exclusion principle, partially ordered sets, and so on. This is perhaps as much of set theory as the typical mathematician uses. Indeed, one may "construct" the natural numbers, real numbers, and so on in this framework. However, situations such as Russell's paradox show that some care must be taken to define what, precisely, is a set. However, results in mathematical logic imply it is impossible to determine whether or not these axioms are consistent using only proofs expressed in this language. Assuming they are indeed consistent, there are also statements whose truth or falsity cannot be determined from them. These statements (or their negations!) can be taken as axioms for set theory as well. For example, Cohen's technique of forcing showed that the Axiom of Choice is independent of the other axioms of ZF. (That axiom states that for every collection of nonempty sets, there is a set containing one element from each set in the collection.) This axiom is equivalent to a number of other statements (e.g. Zorn's Lemma) whose assumption allows the proof of surprising even paradoxical results such as the Banach-Tarski sphere decomposition. Thus, some authors are careful to distinguish results which depend on this or other non-ZF axioms; most assume it (that is, they work in ZFC Set Theory).

    37. Wiki Martin S Axiom
    Martin, is a statement which is independent of the usual axioms of ZFC set theory. It is implied by the Continuum hypothesis, so certainly consistent with
    http://wapedia.mobi/en/Martin's_axiom
    Wiki: Martin's axiom In the mathematical field of set theory , named after Donald A. Martin , is a statement which is independent of the usual axioms of ZFC set theory . It is implied by the continuum hypothesis , so certainly consistent with ZFC, but is also known to be consistent with ZF + not CH. Indeed, it is only really of interest when the continuum hypothesis fails (otherwise it adds nothing to ZFC). It can informally be considered to say that all cardinals less than the cardinality of the continuum Rasiowa-Sikorski lemma . More formally it is a principle that is used to control certain forcing arguments. Home Licensing Wapedia: For Wikipedia on mobile phones

    38. Logic Seminar In Semester I AY 2007/2008
    Martin s axiom arose from the consistency problem for Souslin s hypothesis and it relates closely with iterated forcing. Souslin s hypothesis (SH) states
    http://www.comp.nus.edu.sg/~fstephan/logicseminar.html
    Logic Seminar in Semester I AY 2007/2008
    Talks are Wednesday afternoon in Math Studio (S14#03-01)
    If there is a Colloquium Talk
    Then the Logic Seminar is from 14:00 hrs to 15:00 hrs (to avoid timetable clash)
    Else the Logic Seminar is from 15:00 hrs to 16:00 hrs
  • 15/08/2007, Week 1, 16.30 hrs: Organizational Meeting
  • 22/08/2007, Week 2, 15.00 hrs: Frank Stephan (joint work with Sanjay Jain)
    Learning in Friedberg Numberings
  • 29/08/2007, Week 3, 15:00 hrs: Wu Guohua
    Cuppable degrees and noncuppable pairs
    In this talk, we will outline the proof on the following result: There is a minimal pair a, b such that both are cuppable and no incomplete computably enumerable degree cups both of them to 0'. Several possible projects will be proposed. We will also show that the dual of Lempp's conjecture is true: Given a, b with b not above a, if a is not complete, then there is an incomplete cuppable computably enumerable degree c above b, but not above a.
  • 05/09/2007, Week 4, 15:00 hrs: Johanna Franklin
    Schnorr triviality and genericity The Turing degrees of Schnorr trivial reals seem to have no simple characterization. Therefore, we may examine other properties in connection with Schnorr triviality to determine the extent to which they are compatible in the Turing degrees. In this talk, we will discuss the relationship between Schnorr trviality and genericity. We find that no Schnorr trivial real is Turing equivalent to a 2-generic real. However, we also show that while no Schnorr trivial real is truth-table equivalent to a 1-generic real, such reals may be Turing equivalent.
  • 39. Piotr Koszmider's Web Page
    Making a special settheoretic assumption like the Continuum hypothesis or Martin s axiom we construct an example of Mrówka s space (i.e., obtained from an
    http://www.ime.usp.br/~piotr/cv/ativpas12004e.html
    FORCING
    INFINITY
    TOPOLOGY
    BANACH SPACES C(K)
    Home

    Contact

    Recent preprints

    Publications
    ...
    Previous teaching

    Curiculum Vitae
  • academic activities
  • invited lectures
  • contributed lectures
  • profissional services ... Resources
  • Pages of matematicians
  • Conferences
  • Papers on-line
  • Bulletin Boards
  • Funding sources
  • Institutes
  • Popular resources Previous activities by semester Personal page PIOTR KOSZMIDER, ASSOCIATED PROFESSOR, MAT - IME - USP A. J. Heschel Who is man? The Raymond Fred West Memorial Lectures at Stanford University, 1963. ACTIVITIES DURING THE FIRST SEMESTER 2004 RESEARCH PROJECT 2001 - 2006 Applications of Infinitary Combinatorics in Undecidable Problems on Boolean algebras, compact spaces and Banach spaces. Supported by National Reserach Council (Brazil): Produtividade em Pesquisa (B2) fellowship. There is a classical chain of mathematical constructions: infinite families of sets which form Boolean algebras which induce, by the Stone duality
  • 40. Andy's Math/CS Page
    Assuming the Continuum hypothesis is false, where does the threshold lie? On the other hand, Martin s axiom, which is independent of CH,
    http://andysresearch.blogspot.com/
    @import url("http://www.blogger.com/css/blog_controls.css"); @import url("http://www.blogger.com/dyn-css/authorization.css?targetBlogID=19908808");
    Andy's Math/CS page
    Monday, December 17, 2007
    Cardinal Rules
    Pick your favorite countable set S . Let F be a 'nested' family of distinct subsets of S ; that is, if A, B are members of F , then either A is contained in B or B is contained in A
    Then clearly F can be at most countable... right?
    A puzzle from Bollobas' recent book
    Given a collection C of functions from to N , say that C is unbounded if for any function f (in C or not), there exists a function g in C such that g(i) > f(i) for infinitely many i
    Clearly the class C of all functions from N to N is unbounded. Also, standard diagonalization techniques tell us that no countable collection C can be unbounded (exercise).
    The question then becomes: what is the smallest cardinality of any unbounded collection C ? Assuming the Continuum Hypothesis is false, where does the threshold lie?
    Fortunately or unfortunately, there seems to be little we can say about this issue within the standard axioms of set theory. Assuming CH is false, the threshold could be as low as the first uncountable cardinal, or as large as the continuum, or in betweenthis I learned from Jech's encyclopedic book Set Theory . There are many questions of this flavor, where the key construction (in our case, constructing a 'bounding function' for a given 'small' collection

    41. EULER Record Details
    Subject, Lusin sequence; Martin s axiom; Continuum hypothesis. MSC, 03E05; 03E50; 03E35. Type, Text.Article. Record Source, Zentralblatt MATH
    http://www.emis.de/projects/EULER/detail?ide=2001abralusisequunde&matchno=2&matc

    42. ScienceDirect - Expositiones Mathematicae : On Extensions Of Partial Functions
    Assume the Continuum hypothesis (or, more generally, Martin s axiom). Let fR R be a partial function. The following two assertions are equivalent
    http://linkinghub.elsevier.com/retrieve/pii/S0723086907000138
    Athens/Institution Login Not Registered? User Name: Password: Remember me on this computer Forgotten password? Home Browse My Settings ... Help Quick Search Title, abstract, keywords Author e.g. j s smith Journal/book title Volume Issue Page Expositiones Mathematicae
    Volume 25, Issue 4
    , 1 November 2007, Pages 345-353
    Abstract
    Full Text + Links PDF (132 K) Related Articles in ScienceDirect Characterization of realizable space complexities
    Annals of Pure and Applied Logic

    Characterization of realizable space complexities
    Annals of Pure and Applied Logic Volume 73, Issue 2 1 June 1995 Pages 171-190
    Joel I. Seiferas and Albert R. Meyer
    Abstract
    does characterize the complexity of some partial function, even one that assumes only the values and 1.
    Abstract
    Abstract + References PDF (1392 K) Partial functions and logics: A warning ...
    Information Processing Letters
    Partial functions and logics: A warning Information Processing Letters Volume 54, Issue 2 28 April 1995 Pages 65-67 C. B. Jones Abstract One approach to handling partial functions when specifying and reasoning about programs is to say that application outside their domain yields an indeterminate element of their range. This paper puts forward a counter example which suggests that this approach might be problematic in a specification language. Abstract Abstract + References PDF (229 K) Sum of Sierpiski ... Topology and its Applications Sum of Sierpi Topology and its Applications Volume 122, Issue 3

    43. Path News.jmag.net!news.jmas.co.jp!nf9.iij.ad.jp!nr1.iij.ad.jp
    The Continuum hypothesis A basic reference is Godel s ``What is Cantor s Continuum Various forcing axioms (e.g. Martin s axiom), which are ``maximality
    http://linas.org/mirrors/nntp/sci.math/faq.continuum.html
    Path: news.jmag.net news.jmas.co.jp !nf9.iij.ad.jp!nr1.iij.ad.jp! news.iij.ad.jp news.qtnet.ad.jp !news1.mex.ad.jp!news0-mex-ad-jp!nr1.ctc.ne.jp! news.ctc.ne.jp !newsfeed.kddnet.ad.jp!newssvt07.tk!newsfeed.mesh.ad.jp!newsfeed.berkeley.edu!newsfeed.direct.ca!torn!watserv3.uwaterloo.ca!alopez-o From: alopez-o@neumann.uwaterloo.ca (Alex Lopez-Ortiz) Newsgroups: sci.math, news.answers daisy.uwaterloo.ca Summary: Part 25 of 31, New version Originator: alopez-o@neumann.uwaterloo.ca Originator: alopez-o@daisy.uwaterloo.ca Xref: news.jmag.net news.answers sci.answers:152 http://www.jazzie.com/ii/math/ch/ ... http://www.best.com/ ii/math/ch/ Alex Lopez-Ortiz alopez-o@unb.ca http://www.cs.unb.ca/~alopez-o Assistant Professor Faculty of Computer Science University of New Brunswick Last updated: Sat Feb 19 00:01:06 2000

    44. List
    We show in particular that under Martin s axiom there is compact $X$ with $ X =c$ carrying Abstract Assuming the Continuum hypothesis, we show that
    http://www.math.uni.wroc.pl/~grzes/abs.htm
    My research interests are: measure theory, set-theoretic topology and analysis.
    This page offers the list of my recent papers - their abstracts appear here after clicking the corresponding title, links to coauthors, and in most cases
    DVI and PS files of the preprints.
    Last modified: October 2007

    On compactness of measures on Polish spaces
    Abstract:
    A construction of a Banach space C(K) with few operators
    Abstract: We present a construction, requiring no additional axioms, of a compact connected space K such that every bounded operator T: C(K) -> C(K) can be written as T=gI+S, where g is in C(K) and S is a weakly compact operator. This extends a result due to Koszmider, who proved such a result assuming the continuum hypothesis.
    Large families of mutually singular Radon measures
    Abstract:
    On compact spaces carrying Radon measures of large Maharam type
    Abstract: The paper surveys results related to Pelczynski's conjecture on Banach spaces containing $l_1$ spaces, and Haydon's problem on compact spaces carrying Radon measures on uncountable type and mappings onto Tychonoff cubes. We discuss results due to R. Haydon, S. Argyros, D.H. Fremlin, G. Plebanek and others. In some cases we present new proofs based on an unpublished measure-theoretic lemma due to Haydon. This survey was presented in the series of invited lectures during Winter School in Abstract Analysis (Section Analysis), Lhota, Czech Republic 2002. Precalibre pairs of measure algebras Abstract: Generalisations of epsilon-density

    45. Papers.html
    The second paper introduces a maximally strong forcing axiom Martin s Maximum Counterexamples to the Continuum hypothesis, (joint with M. Magidor),
    http://www.math.uci.edu/personnel/Foreman/homepage/newpapers.html
    Annotated List of Matt Foreman's Papers: The papers below are organized by subject matter and annotated with comments. If you prefer a simple chronological listing go here. Click to jump to one of the Topics A.) Paradoxical decompositions and the Banach-Tarski Paradox with nice pieces B.) A descriptive view of ergodic theory C.) Amenable group actions, the Rusiewicz problem, the Hahn-Banach theorem and Lebesgue measurability. D.) Foundations of mathematics. E.) Consistency results of foundational interest F.) Model Theory: (Non-regular ultrafilters, Chang's Conjecture, Lowenheim-Skolem Theorems). G.) Saturated Ideals H.) Natural structure in set theory I.) Applications of set theory to Abelian groups and modules. J.) Aronzahn Trees K.) Hungarian Combinatorics L.) Pot Pouri A.) Paradoxical decompositions and the Banach-Tarski Paradox with nice pieces:
    The main result also gives paradoxical decompositions without the Axiom of Choice of open dense subsets of S^n. Banach-Tarski Decompositions Using Sets with the Property of Baire , (Joint with R. Dougherty.)

    46. Sci.math FAQ: The Continuum Hypothesis
    The Continuum hypothesis A basic reference is Godel s ``What is Cantor s Continuum Various forcing axioms (eg Martin s axiom), which are ``maximality
    http://faqs.cs.uu.nl/na-dir/sci-math-faq/continuum.html
    Note from archiver cs.uu.nl: This page is part of a big collection of Usenet postings, archived here for your convenience. For matters concerning the content of this page , please contact its author(s); use the source , if all else fails. For matters concerning the archive as a whole, please refer to the archive description or contact the archiver.
    Subject: sci.math FAQ: The Continuum Hypothesis
    This article was archived around: 17 Feb 2000 22:55:53 GMT
    All FAQs in Directory: sci-math-faq
    All FAQs posted in: sci.math
    Source: Usenet Version
    http://www.jazzie.com/ii/math/ch/ http://www.best.com/ ii/math/ch/ Alex Lopez-Ortiz alopez-o@unb.ca http://www.cs.unb.ca/~alopez-o Assistant Professor Faculty of Computer Science University of New Brunswick

    47. Tree Structure Of LoLaLi Concept Hierarchy Updated On 2004624
    393 Martin s axiom . . . . 382 Continuum hypothesis g . . . . Not 379 cardinal number . . . Par 216 abstract model theory + . . . . 254 quantifier (5) + g .
    http://remote.science.uva.nl/~caterina/LoLaLi/soft/ch-data/tree.txt
    Tree structure of LoLaLi Concept Hierarchy Updated on 2004:6:24, 13:16 In each line the following information is shown (in order from left to right, [OPT] indicates information that can be missing): Type of relation with the parent concept (see below for the legend) [OPT] Id of the node Name of the node Number of children, in parenthesis [OPT] + if the concept is repeated somehwere [OPT] (see file path.txt for the list of repeated nodes) LEGEND: SbC Subclass Par Part-of Not Notion Res Mathematical results His historical view Ins Instance Uns Unspecified top (4) g . 87 computer science (4) g . . 191 logic (1) (31) + g . . . Par 53 automated reasoning (25) + . . . . 35 belief revision . . . . . 76 update . . . . 67 nonmonotonic reasoning . . . . 63 mathematical induction . . . . 71 rewrite system (3) . . . . . 350 termination . . . . . 348 confluence . . . . . 349 critical pair . . . . 70 resolution (7) + . . . . . 339 purity principle . . . . . 342 simplification . . . . . 337 demodulation . . . . . 338 ordering . . . . . 340 removal of tautologies . . . . . 341 resolution refinement (4) . . . . . . 345 lock resolution . . . . . . 344 hyper resolution . . . . . . 347 theory resolution . . . . . . 346 set of support . . . . . 343 subsumption . . . . 68 paramodulation . . . . Not 72 skolemisation . . . . 65 model checking . . . . 55 clause 55 (2) . . . . . 80 horn clause g . . . . . 79 Gentzen clause . . . . 74 uncertainty . . . . 75 unification + . . . . 57 connection graph procedure . . . . 64 metatheory . . . . 61 literal . . . . 58 connection matrix . . . . 81 clause 81 . . . . . SbC 82 relative clause . . . . 69 reason extraction . . . . 59 deduction (7) + . . . . . Not 109 inconsistency . . . . . 106 consequence g . . . . . SbC 494 labelled deductive system . . . . . 111 rule-based deduction . . . . . Not 108 entailment + . . . . . 110 natural deduction (2) + g . . . . . . Not 482 hypothetical reasoning + . . . . . . Not 483 normalization . . . . . Not 107 consistency + . . . . Res 60 Herbrand's theorem . . . . 56 completion . . . . . 86 Knuth Bendix completion . . . . 73 theorem prover (3) . . . . . 427 Bliksem g . . . . . 428 Boyer-Moore theorem prover . . . . . 429 SPASS g . . . . 66 narrowing . . . . 62 logic programming g . . . . 54 answer extraction . . . . 247 nonmonotonic logic + g . . . . . 248 default inference . . . Par 198 proof theory (22) g . . . . SbC 503 sequent calculus . . . . . Not 484 structural rules . . . . 289 interpretation . . . . 282 constructive analysis . . . . 295 recursive ordinal . . . . 287 Goedel numbering . . . . 288 higher-order arithmetic . . . . 281 complexity of proofs . . . . 294 recursive analysis . . . . Res 292 normal form theorem . . . . 297 second-order arithmetic . . . . SbC 110 natural deduction (2) + g . . . . . Not 482 hypothetical reasoning + . . . . . Not 483 normalization . . . . 290 intuitionistic mathematics . . . . 286 functionals in proof theory . . . . 298 structure of proofs g . . . . 283 constructive system . . . . 291 metamathematics . . . . 59 deduction (7) + . . . . . Not 109 inconsistency . . . . . 106 consequence g . . . . . SbC 494 labelled deductive system . . . . . 111 rule-based deduction . . . . . Not 108 entailment + . . . . . 110 natural deduction (2) + g . . . . . . Not 482 hypothetical reasoning + . . . . . . Not 483 normalization . . . . . Not 107 consistency + . . . . 296 relative consistency . . . . Not 284 cut elimination theorem g . . . . 293 ordinal notation . . . . 285 first-order arithmetic . . . . SbC 485 proof nets . . . SbC 475 first order logic (4) g . . . . 254 quantifier (5) + g . . . . . Not 516 bound variable + g . . . . . His 514 Frege on quantification + g . . . . . Not 517 free variable + g . . . . . His 513 Aristotle on quantification + . . . . . Not 301 scope . . . . . . 351 scoping algorithm . . . . Par 476 first order language g . . . . . Not 477 fragment (3) g . . . . . . SbC 479 finite-variable fragment g . . . . . . SbC 480 guarded fragment g . . . . . . SbC 478 modal fragment g . . . . . . . Not 470 standard translation + g . . . . 511 SPASS g . . . . Par 515 quantification (4) + . . . . . Not 516 bound variable + g . . . . . His 514 Frege on quantification + g . . . . . Not 517 free variable + g . . . . . His 513 Aristotle on quantification + . . . 193 computability theory . . . SbC 167 temporal logic (2) + g . . . 435 type theory (2) + . . . . 433 type . . . . . 434 type shifting . . . . Not 23 polymorphism + g . . . 495 substructural logic . . . SbC 200 relevance logic + . . . . 108 entailment + . . . Res 180 Lindstroem's theorem + . . . SbC 481 linear logic . . . 526 variable g . . . . SbC 517 free variable + g . . . Res 179 Goedel's 1st incompleteness theorem (1931) + g . . . SbC 125 feature logic + . . . . 75 unification + . . . 197 model theory (29) . . . . 237 set-theoretic model theory . . . . 11 universal algebra + . . . . 225 infinitary logic . . . . 217 admissible set . . . . 234 recursion-theoretic model theory . . . . 239 ultraproduct . . . . 227 logic with extra quantifiers . . . . SbC 457 modal model theory (7) + . . . . . SbC 215 Kripke semantics + g . . . . . . Not 489 accessability relation + . . . . . Not 461 generated submodel g . . . . . 462 model (4) + . . . . . . SbC 464 finite model g . . . . . . SbC 466 image finite model . . . . . . . Res 467 Hennessy-Milner theorem g . . . . . . Par 463 valuation g . . . . . . SbC 465 tree model g . . . . . Not 459 disjoint union of models g . . . . . 455 homomorphism (2) + g . . . . . . SbC 456 bounded homomorphism g . . . . . . SbC 468 bounded morphism . . . . . Not 469 expressive power g . . . . . . Not 470 standard translation + g . . . . . Not 460 bisimulation g . . . . 219 completeness of theories . . . . 235 saturation . . . . 222 equational class . . . . 238 stability . . . . 233 quantifier elimination . . . . 221 denumerable structure . . . . 228 model-theoretic algebra . . . . 236 second-order model theory . . . . 230 model of arithmetic . . . . 218 categoricity g . . . . 220 definability . . . . 226 interpolation . . . . SbC 454 first order model theory . . . . . 455 homomorphism (2) + g . . . . . . SbC 456 bounded homomorphism g . . . . . . SbC 468 bounded morphism . . . . 231 nonclassical model (2) . . . . . 246 sheaf model . . . . . 245 boolean valued . . . . 201 set theory (24) + g . . . . . 398 set-theoretic definability . . . . . Not 391 iota operator . . . . . 384 determinacy . . . . . 387 fuzzy relation . . . . . Not 385 filter . . . . . 389 generalized continuum hypothesis . . . . . 386 function (3) g . . . . . . 482 hypothetical reasoning + . . . . . . 509 functional application . . . . . . 508 functional composition . . . . . Not 394 ordinal definability . . . . . Not 107 consistency + . . . . . 397 set algebra . . . . . 399 Suslin scheme . . . . . SbC 383 descriptive set theory g . . . . . 388 fuzzy set g . . . . . 378 borel classification g . . . . . SbC 380 combinatorial set theory . . . . . Not 390 independence . . . . . 381 constructibility . . . . . 396 relation g . . . . . 377 axiom of choice g . . . . . 392 large cardinal . . . . . Not 395 ordinal number . . . . . 393 Martin's axiom . . . . . 382 continuum hypothesis g . . . . . Not 379 cardinal number . . . . 232 preservation . . . . 216 abstract model theory + . . . . . 254 quantifier (5) + g . . . . . . Not 516 bound variable + g . . . . . . His 514 Frege on quantification + g . . . . . . Not 517 free variable + g . . . . . . His 513 Aristotle on quantification + . . . . . . Not 301 scope . . . . . . . 351 scoping algorithm . . . . 229 model-theoretic forcing . . . . 224 higher-order model theory . . . . Par 493 correspondence theory . . . . 223 finite structure . . . Res 182 Loewenheim-Skolem-Tarski theorem + . . . Not 83 completeness (2) + g . . . . SbC 84 axiomatic completeness . . . . SbC 85 functional completeness + . . . SbC 156 modal logic (13) + g . . . . Ins 512 S4 . . . . 488 modes . . . . 486 frame (2) . . . . . SbC 487 frame constraints . . . . Par 210 modal operator (2) + g . . . . . SbC 472 diamond g . . . . . SbC 473 box g . . . . SbC 213 doxastic logic g . . . . Not 489 accessability relation + . . . . Par 471 modal language (2) g . . . . . Par 210 modal operator (2) + g . . . . . . SbC 472 diamond g . . . . . . SbC 473 box g . . . . . 490 boolean operators . . . . SbC 211 alethic logic g . . . . SbC 212 deontic logic (3) g . . . . . SbC 521 standard deontic logic g . . . . . SbC 523 two-sorted deontic logic g . . . . . SbC 522 dyadic deontic logic g . . . . Par 215 Kripke semantics + g . . . . . Not 489 accessability relation + . . . . Par 457 modal model theory (7) + . . . . . SbC 215 Kripke semantics + g . . . . . . Not 489 accessability relation + . . . . . Not 461 generated submodel g . . . . . 462 model (4) + . . . . . . SbC 464 finite model g . . . . . . SbC 466 image finite model . . . . . . . Res 467 Hennessy-Milner theorem g . . . . . . Par 463 valuation g . . . . . . SbC 465 tree model g . . . . . Not 459 disjoint union of models g . . . . . 455 homomorphism (2) + g . . . . . . SbC 456 bounded homomorphism g . . . . . . SbC 468 bounded morphism . . . . . Not 469 expressive power g . . . . . . Not 470 standard translation + g . . . . . Not 460 bisimulation g . . . . SbC 214 epistemic logic g . . . . Not 462 model (4) + . . . . . SbC 464 finite model g . . . . . SbC 466 image finite model . . . . . . Res 467 Hennessy-Milner theorem g . . . . . Par 463 valuation g . . . . . SbC 465 tree model g . . . 194 computational logic (2) . . . Not 183 operator (4) + g . . . . 254 quantifier (5) + g . . . . . Not 516 bound variable + g . . . . . His 514 Frege on quantification + g . . . . . Not 517 free variable + g . . . . . His 513 Aristotle on quantification + . . . . . Not 301 scope . . . . . . 351 scoping algorithm . . . . SbC 210 modal operator (2) + g . . . . . SbC 472 diamond g . . . . . SbC 473 box g . . . . 518 truth-funcional operator (2) g . . . . . SbC 252 iff g . . . . . SbC 253 negation . . . . Not 525 arity g . . . SbC 192 combinatory logic g . . . Par 199 recursive function theory . . . 361 formal semantics (10) + g . . . . 365 property theory . . . . 240 Montague grammar (4) . . . . . 243 sense 243 (4) g . . . . . . 203 meaning relation (5) . . . . . . . 205 hyponymy g . . . . . . . 204 antonymy g . . . . . . . 207 synonymy g . . . . . . . . 149 intensional isomorphism + . . . . . . . 206 paraphrase g . . . . . . . 108 entailment + . . . . . . 375 metaphor g . . . . . . 376 metonymy g . . . . . . 374 literal meaning . . . . . 244 sense 244 g . . . . . 241 meaning postulate . . . . . 242 ptq g . . . . . . 300 quantifying in . . . . 254 quantifier (5) + g . . . . . Not 516 bound variable + g . . . . . His 514 Frege on quantification + g . . . . . Not 517 free variable + g . . . . . His 513 Aristotle on quantification + . . . . . Not 301 scope . . . . . . 351 scoping algorithm . . . . 353 truth (4) + . . . . . 431 truth definition g . . . . . 432 truth value . . . . . 372 truth function + g . . . . . 430 truth condition . . . . 362 dynamic semantics . . . . 363 lexical semantics . . . . 366 situation semantics (2) g . . . . . 402 partiality . . . . . 400 situation . . . . . . 401 scene . . . . Not 507 compositionality . . . . 364 natural logic + . . . . Par 515 quantification (4) + . . . . . Not 516 bound variable + g . . . . . His 514 Frege on quantification + g . . . . . Not 517 free variable + g . . . . . His 513 Aristotle on quantification + . . . SbC 168 lambda calculus (4) g . . . . 170 application . . . . 172 lambda operator . . . . 169 abstraction . . . . 171 conversion . . . 38 knowledge representation (20) + g . . . . 152 frame (1) . . . . 104 database + g . . . . . 105 query g . . . . 165 situation calculus . . . . 167 temporal logic (2) + g . . . . 166 temporal logic (1) g . . . . 93 concept formation . . . . . 90 concept + . . . . . . 91 individual concept . . . . 154 logical omniscience . . . . 162 rule-based representation . . . . 157 predicate logic + g . . . . 159 procedural representation . . . . 161 representation language . . . . 156 modal logic (13) + g . . . . . Ins 512 S4 . . . . . 488 modes . . . . . 486 frame (2) . . . . . . SbC 487 frame constraints . . . . . Par 210 modal operator (2) + g . . . . . . SbC 472 diamond g . . . . . . SbC 473 box g . . . . . SbC 213 doxastic logic g . . . . . Not 489 accessability relation + . . . . . Par 471 modal language (2) g . . . . . . Par 210 modal operator (2) + g . . . . . . . SbC 472 diamond g . . . . . . . SbC 473 box g . . . . . . 490 boolean operators . . . . . SbC 211 alethic logic g . . . . . SbC 212 deontic logic (3) g . . . . . . SbC 521 standard deontic logic g . . . . . . SbC 523 two-sorted deontic logic g . . . . . . SbC 522 dyadic deontic logic g . . . . . Par 215 Kripke semantics + g . . . . . . Not 489 accessability relation + . . . . . Par 457 modal model theory (7) + . . . . . . SbC 215 Kripke semantics + g . . . . . . . Not 489 accessability relation + . . . . . . Not 461 generated submodel g . . . . . . 462 model (4) + . . . . . . . SbC 464 finite model g . . . . . . . SbC 466 image finite model . . . . . . . . Res 467 Hennessy-Milner theorem g . . . . . . . Par 463 valuation g . . . . . . . SbC 465 tree model g . . . . . . Not 459 disjoint union of models g . . . . . . 455 homomorphism (2) + g . . . . . . . SbC 456 bounded homomorphism g . . . . . . . SbC 468 bounded morphism . . . . . . Not 469 expressive power g . . . . . . . Not 470 standard translation + g . . . . . . Not 460 bisimulation g . . . . . SbC 214 epistemic logic g . . . . . Not 462 model (4) + . . . . . . SbC 464 finite model g . . . . . . SbC 466 image finite model . . . . . . . Res 467 Hennessy-Milner theorem g . . . . . . Par 463 valuation g . . . . . . SbC 465 tree model g . . . . 97 context (2) . . . . . 99 context dependence . . . . . 98 context change . . . . 160 relation system . . . . 153 frame problem g . . . . 92 concept analysis . . . . . 90 concept + . . . . . . 91 individual concept . . . . 163 script . . . . 145 idea g . . . . . 90 concept + . . . . . . 91 individual concept . . . . 164 semantic network g . . . . 247 nonmonotonic logic + g . . . . . 248 default inference . . . Par 367 semantics 367 (8) g . . . . 371 truth conditional semantics . . . . 373 truth table . . . . SbC 215 Kripke semantics + g . . . . . Not 489 accessability relation + . . . . 85 functional completeness + . . . . 370 satisfaction . . . . 369 material implication g . . . . 368 assignment . . . . Not 372 truth function + g . . . Par 201 set theory (24) + g . . . . 398 set-theoretic definability . . . . Not 391 iota operator . . . . 384 determinacy . . . . 387 fuzzy relation . . . . Not 385 filter . . . . 389 generalized continuum hypothesis . . . . 386 function (3) g . . . . . 482 hypothetical reasoning + . . . . . 509 functional application . . . . . 508 functional composition . . . . Not 394 ordinal definability . . . . Not 107 consistency + . . . . 397 set algebra . . . . 399 Suslin scheme . . . . SbC 383 descriptive set theory g . . . . 388 fuzzy set g . . . . 378 borel classification g . . . . SbC 380 combinatorial set theory . . . . Not 390 independence . . . . 381 constructibility . . . . 396 relation g . . . . 377 axiom of choice g . . . . 392 large cardinal . . . . Not 395 ordinal number . . . . 393 Martin's axiom . . . . 382 continuum hypothesis g . . . . Not 379 cardinal number . . . Par 216 abstract model theory + . . . . 254 quantifier (5) + g . . . . . Not 516 bound variable + g . . . . . His 514 Frege on quantification + g . . . . . Not 517 free variable + g . . . . . His 513 Aristotle on quantification + . . . . . Not 301 scope . . . . . . 351 scoping algorithm . . . 178 compactness + . . . His 177 aristotelean logic (2) + g . . . . Par 39 syllogism g . . . . Par 513 Aristotle on quantification + . . . Par 196 foundations of theories . . . 195 constraint programming . . Not 88 software (2) . . . 104 database + g . . . . 105 query g . . . 275 programming language (3) . . . . 190 semantics 190 (8) + g . . . . . 356 denotational semantics . . . . . 119 domain theory g . . . . . . 120 domain . . . . . 360 program analysis . . . . . 359 process model . . . . . SbC 215 Kripke semantics + g . . . . . . Not 489 accessability relation + . . . . . 357 operational semantics . . . . . 358 partial evaluation . . . . . 355 algebraic semantics . . . . 276 syntax 276 . . . . 277 prolog g . . . . . 70 resolution (7) + . . . . . . 339 purity principle . . . . . . 342 simplification . . . . . . 337 demodulation . . . . . . 338 ordering . . . . . . 340 removal of tautologies . . . . . . 341 resolution refinement (4) . . . . . . . 345 lock resolution . . . . . . . 344 hyper resolution . . . . . . . 347 theory resolution . . . . . . . 346 set of support . . . . . . 343 subsumption . . Par 34 artificial intelligence (5) g . . . Par 38 knowledge representation (20) + g . . . . 152 frame (1) . . . . 104 database + g . . . . . 105 query g . . . . 165 situation calculus . . . . 167 temporal logic (2) + g . . . . 166 temporal logic (1) g . . . . 93 concept formation . . . . . 90 concept + . . . . . . 91 individual concept . . . . 154 logical omniscience . . . . 162 rule-based representation . . . . 157 predicate logic + g . . . . 159 procedural representation . . . . 161 representation language . . . . 156 modal logic (13) + g . . . . . Ins 512 S4 . . . . . 488 modes . . . . . 486 frame (2) . . . . . . SbC 487 frame constraints . . . . . Par 210 modal operator (2) + g . . . . . . SbC 472 diamond g . . . . . . SbC 473 box g . . . . . SbC 213 doxastic logic g . . . . . Not 489 accessability relation + . . . . . Par 471 modal language (2) g . . . . . . Par 210 modal operator (2) + g . . . . . . . SbC 472 diamond g . . . . . . . SbC 473 box g . . . . . . 490 boolean operators . . . . . SbC 211 alethic logic g . . . . . SbC 212 deontic logic (3) g . . . . . . SbC 521 standard deontic logic g . . . . . . SbC 523 two-sorted deontic logic g . . . . . . SbC 522 dyadic deontic logic g . . . . . Par 215 Kripke semantics + g . . . . . . Not 489 accessability relation + . . . . . Par 457 modal model theory (7) + . . . . . . SbC 215 Kripke semantics + g . . . . . . . Not 489 accessability relation + . . . . . . Not 461 generated submodel g . . . . . . 462 model (4) + . . . . . . . SbC 464 finite model g . . . . . . . SbC 466 image finite model . . . . . . . . Res 467 Hennessy-Milner theorem g . . . . . . . Par 463 valuation g . . . . . . . SbC 465 tree model g . . . . . . Not 459 disjoint union of models g . . . . . . 455 homomorphism (2) + g . . . . . . . SbC 456 bounded homomorphism g . . . . . . . SbC 468 bounded morphism . . . . . . Not 469 expressive power g . . . . . . . Not 470 standard translation + g . . . . . . Not 460 bisimulation g . . . . . SbC 214 epistemic logic g . . . . . Not 462 model (4) + . . . . . . SbC 464 finite model g . . . . . . SbC 466 image finite model . . . . . . . Res 467 Hennessy-Milner theorem g . . . . . . Par 463 valuation g . . . . . . SbC 465 tree model g . . . . 97 context (2) . . . . . 99 context dependence . . . . . 98 context change . . . . 160 relation system . . . . 153 frame problem g . . . . 92 concept analysis . . . . . 90 concept + . . . . . . 91 individual concept . . . . 163 script . . . . 145 idea g . . . . . 90 concept + . . . . . . 91 individual concept . . . . 164 semantic network g . . . . 247 nonmonotonic logic + g . . . . . 248 default inference . . . 191 logic (1) (31) + g . . . . Par 53 automated reasoning (25) + . . . . . 35 belief revision . . . . . . 76 update . . . . . 67 nonmonotonic reasoning . . . . . 63 mathematical induction . . . . . 71 rewrite system (3) . . . . . . 350 termination . . . . . . 348 confluence . . . . . . 349 critical pair . . . . . 70 resolution (7) + . . . . . . 339 purity principle . . . . . . 342 simplification . . . . . . 337 demodulation . . . . . . 338 ordering . . . . . . 340 removal of tautologies . . . . . . 341 resolution refinement (4) . . . . . . . 345 lock resolution . . . . . . . 344 hyper resolution . . . . . . . 347 theory resolution . . . . . . . 346 set of support . . . . . . 343 subsumption . . . . . 68 paramodulation . . . . . Not 72 skolemisation . . . . . 65 model checking . . . . . 55 clause 55 (2) . . . . . . 80 horn clause g . . . . . . 79 Gentzen clause . . . . . 74 uncertainty . . . . . 75 unification + . . . . . 57 connection graph procedure . . . . . 64 metatheory . . . . . 61 literal . . . . . 58 connection matrix . . . . . 81 clause 81 . . . . . . SbC 82 relative clause . . . . . 69 reason extraction . . . . . 59 deduction (7) + . . . . . . Not 109 inconsistency . . . . . . 106 consequence g . . . . . . SbC 494 labelled deductive system . . . . . . 111 rule-based deduction . . . . . . Not 108 entailment + . . . . . . 110 natural deduction (2) + g . . . . . . . Not 482 hypothetical reasoning + . . . . . . . Not 483 normalization . . . . . . Not 107 consistency + . . . . . Res 60 Herbrand's theorem . . . . . 56 completion . . . . . . 86 Knuth Bendix completion . . . . . 73 theorem prover (3) . . . . . . 427 Bliksem g . . . . . . 428 Boyer-Moore theorem prover . . . . . . 429 SPASS g . . . . . 66 narrowing . . . . . 62 logic programming g . . . . . 54 answer extraction . . . . . 247 nonmonotonic logic + g . . . . . . 248 default inference . . . . Par 198 proof theory (22) g . . . . . SbC 503 sequent calculus . . . . . . Not 484 structural rules . . . . . 289 interpretation . . . . . 282 constructive analysis . . . . . 295 recursive ordinal . . . . . 287 Goedel numbering . . . . . 288 higher-order arithmetic . . . . . 281 complexity of proofs . . . . . 294 recursive analysis . . . . . Res 292 normal form theorem . . . . . 297 second-order arithmetic . . . . . SbC 110 natural deduction (2) + g . . . . . . Not 482 hypothetical reasoning + . . . . . . Not 483 normalization . . . . . 290 intuitionistic mathematics . . . . . 286 functionals in proof theory . . . . . 298 structure of proofs g . . . . . 283 constructive system . . . . . 291 metamathematics . . . . . 59 deduction (7) + . . . . . . Not 109 inconsistency . . . . . . 106 consequence g . . . . . . SbC 494 labelled deductive system . . . . . . 111 rule-based deduction . . . . . . Not 108 entailment + . . . . . . 110 natural deduction (2) + g . . . . . . . Not 482 hypothetical reasoning + . . . . . . . Not 483 normalization . . . . . . Not 107 consistency + . . . . . 296 relative consistency . . . . . Not 284 cut elimination theorem g . . . . . 293 ordinal notation . . . . . 285 first-order arithmetic . . . . . SbC 485 proof nets . . . . SbC 475 first order logic (4) g . . . . . 254 quantifier (5) + g . . . . . . Not 516 bound variable + g . . . . . . His 514 Frege on quantification + g . . . . . . Not 517 free variable + g . . . . . . His 513 Aristotle on quantification + . . . . . . Not 301 scope . . . . . . . 351 scoping algorithm . . . . . Par 476 first order language g . . . . . . Not 477 fragment (3) g . . . . . . . SbC 479 finite-variable fragment g . . . . . . . SbC 480 guarded fragment g . . . . . . . SbC 478 modal fragment g . . . . . . . . Not 470 standard translation + g . . . . . 511 SPASS g . . . . . Par 515 quantification (4) + . . . . . . Not 516 bound variable + g . . . . . . His 514 Frege on quantification + g . . . . . . Not 517 free variable + g . . . . . . His 513 Aristotle on quantification + . . . . 193 computability theory . . . . SbC 167 temporal logic (2) + g . . . . 435 type theory (2) + . . . . . 433 type . . . . . . 434 type shifting . . . . . Not 23 polymorphism + g . . . . 495 substructural logic . . . . SbC 200 relevance logic + . . . . . 108 entailment + . . . . Res 180 Lindstroem's theorem + . . . . SbC 481 linear logic . . . . 526 variable g . . . . . SbC 517 free variable + g . . . . Res 179 Goedel's 1st incompleteness theorem (1931) + g . . . . SbC 125 feature logic + . . . . . 75 unification + . . . . 197 model theory (29) . . . . . 237 set-theoretic model theory . . . . . 11 universal algebra + . . . . . 225 infinitary logic . . . . . 217 admissible set . . . . . 234 recursion-theoretic model theory . . . . . 239 ultraproduct . . . . . 227 logic with extra quantifiers . . . . . SbC 457 modal model theory (7) + . . . . . . SbC 215 Kripke semantics + g . . . . . . . Not 489 accessability relation + . . . . . . Not 461 generated submodel g . . . . . . 462 model (4) + . . . . . . . SbC 464 finite model g . . . . . . . SbC 466 image finite model . . . . . . . . Res 467 Hennessy-Milner theorem g . . . . . . . Par 463 valuation g . . . . . . . SbC 465 tree model g . . . . . . Not 459 disjoint union of models g . . . . . . 455 homomorphism (2) + g . . . . . . . SbC 456 bounded homomorphism g . . . . . . . SbC 468 bounded morphism . . . . . . Not 469 expressive power g . . . . . . . Not 470 standard translation + g . . . . . . Not 460 bisimulation g . . . . . 219 completeness of theories . . . . . 235 saturation . . . . . 222 equational class . . . . . 238 stability . . . . . 233 quantifier elimination . . . . . 221 denumerable structure . . . . . 228 model-theoretic algebra . . . . . 236 second-order model theory . . . . . 230 model of arithmetic . . . . . 218 categoricity g . . . . . 220 definability . . . . . 226 interpolation . . . . . SbC 454 first order model theory . . . . . . 455 homomorphism (2) + g . . . . . . . SbC 456 bounded homomorphism g . . . . . . . SbC 468 bounded morphism . . . . . 231 nonclassical model (2) . . . . . . 246 sheaf model . . . . . . 245 boolean valued . . . . . 201 set theory (24) + g . . . . . . 398 set-theoretic definability . . . . . . Not 391 iota operator . . . . . . 384 determinacy . . . . . . 387 fuzzy relation . . . . . . Not 385 filter . . . . . . 389 generalized continuum hypothesis . . . . . . 386 function (3) g . . . . . . . 482 hypothetical reasoning + . . . . . . . 509 functional application . . . . . . . 508 functional composition . . . . . . Not 394 ordinal definability . . . . . . Not 107 consistency + . . . . . . 397 set algebra . . . . . . 399 Suslin scheme . . . . . . SbC 383 descriptive set theory g . . . . . . 388 fuzzy set g . . . . . . 378 borel classification g . . . . . . SbC 380 combinatorial set theory . . . . . . Not 390 independence . . . . . . 381 constructibility . . . . . . 396 relation g . . . . . . 377 axiom of choice g . . . . . . 392 large cardinal . . . . . . Not 395 ordinal number . . . . . . 393 Martin's axiom . . . . . . 382 continuum hypothesis g . . . . . . Not 379 cardinal number . . . . . 232 preservation . . . . . 216 abstract model theory + . . . . . . 254 quantifier (5) + g . . . . . . . Not 516 bound variable + g . . . . . . . His 514 Frege on quantification + g . . . . . . . Not 517 free variable + g . . . . . . . His 513 Aristotle on quantification + . . . . . . . Not 301 scope . . . . . . . . 351 scoping algorithm . . . . . 229 model-theoretic forcing . . . . . 224 higher-order model theory . . . . . Par 493 correspondence theory . . . . . 223 finite structure . . . . Res 182 Loewenheim-Skolem-Tarski theorem + . . . . Not 83 completeness (2) + g . . . . . SbC 84 axiomatic completeness . . . . . SbC 85 functional completeness + . . . . SbC 156 modal logic (13) + g . . . . . Ins 512 S4 . . . . . 488 modes . . . . . 486 frame (2) . . . . . . SbC 487 frame constraints . . . . . Par 210 modal operator (2) + g . . . . . . SbC 472 diamond g . . . . . . SbC 473 box g . . . . . SbC 213 doxastic logic g . . . . . Not 489 accessability relation + . . . . . Par 471 modal language (2) g . . . . . . Par 210 modal operator (2) + g . . . . . . . SbC 472 diamond g . . . . . . . SbC 473 box g . . . . . . 490 boolean operators . . . . . SbC 211 alethic logic g . . . . . SbC 212 deontic logic (3) g . . . . . . SbC 521 standard deontic logic g . . . . . . SbC 523 two-sorted deontic logic g . . . . . . SbC 522 dyadic deontic logic g . . . . . Par 215 Kripke semantics + g . . . . . . Not 489 accessability relation + . . . . . Par 457 modal model theory (7) + . . . . . . SbC 215 Kripke semantics + g . . . . . . . Not 489 accessability relation + . . . . . . Not 461 generated submodel g . . . . . . 462 model (4) + . . . . . . . SbC 464 finite model g . . . . . . . SbC 466 image finite model . . . . . . . . Res 467 Hennessy-Milner theorem g . . . . . . . Par 463 valuation g . . . . . . . SbC 465 tree model g . . . . . . Not 459 disjoint union of models g . . . . . . 455 homomorphism (2) + g . . . . . . . SbC 456 bounded homomorphism g . . . . . . . SbC 468 bounded morphism . . . . . . Not 469 expressive power g . . . . . . . Not 470 standard translation + g . . . . . . Not 460 bisimulation g . . . . . SbC 214 epistemic logic g . . . . . Not 462 model (4) + . . . . . . SbC 464 finite model g . . . . . . SbC 466 image finite model . . . . . . . Res 467 Hennessy-Milner theorem g . . . . . . Par 463 valuation g . . . . . . SbC 465 tree model g . . . . 194 computational logic (2) . . . . Not 183 operator (4) + g . . . . . 254 quantifier (5) + g . . . . . . Not 516 bound variable + g . . . . . . His 514 Frege on quantification + g . . . . . . Not 517 free variable + g . . . . . . His 513 Aristotle on quantification + . . . . . . Not 301 scope . . . . . . . 351 scoping algorithm . . . . . SbC 210 modal operator (2) + g . . . . . . SbC 472 diamond g . . . . . . SbC 473 box g . . . . . 518 truth-funcional operator (2) g . . . . . . SbC 252 iff g . . . . . . SbC 253 negation . . . . . Not 525 arity g . . . . SbC 192 combinatory logic g . . . . Par 199 recursive function theory . . . . 361 formal semantics (10) + g . . . . . 365 property theory . . . . . 240 Montague grammar (4) . . . . . . 243 sense 243 (4) g . . . . . . . 203 meaning relation (5) . . . . . . . . 205 hyponymy g . . . . . . . . 204 antonymy g . . . . . . . . 207 synonymy g . . . . . . . . . 149 intensional isomorphism + . . . . . . . . 206 paraphrase g . . . . . . . . 108 entailment + . . . . . . . 375 metaphor g . . . . . . . 376 metonymy g . . . . . . . 374 literal meaning . . . . . . 244 sense 244 g . . . . . . 241 meaning postulate . . . . . . 242 ptq g . . . . . . . 300 quantifying in . . . . . 254 quantifier (5) + g . . . . . . Not 516 bound variable + g . . . . . . His 514 Frege on quantification + g . . . . . . Not 517 free variable + g . . . . . . His 513 Aristotle on quantification + . . . . . . Not 301 scope . . . . . . . 351 scoping algorithm . . . . . 353 truth (4) + . . . . . . 431 truth definition g . . . . . . 432 truth value . . . . . . 372 truth function + g . . . . . . 430 truth condition . . . . . 362 dynamic semantics . . . . . 363 lexical semantics . . . . . 366 situation semantics (2) g . . . . . . 402 partiality . . . . . . 400 situation . . . . . . . 401 scene . . . . . Not 507 compositionality . . . . . 364 natural logic + . . . . . Par 515 quantification (4) + . . . . . . Not 516 bound variable + g . . . . . . His 514 Frege on quantification + g . . . . . . Not 517 free variable + g . . . . . . His 513 Aristotle on quantification + . . . . SbC 168 lambda calculus (4) g . . . . . 170 application . . . . . 172 lambda operator . . . . . 169 abstraction . . . . . 171 conversion . . . . 38 knowledge representation (20) + g . . . . . 152 frame (1) . . . . . 104 database + g . . . . . . 105 query g . . . . . 165 situation calculus . . . . . 167 temporal logic (2) + g . . . . . 166 temporal logic (1) g . . . . . 93 concept formation . . . . . . 90 concept + . . . . . . . 91 individual concept . . . . . 154 logical omniscience . . . . . 162 rule-based representation . . . . . 157 predicate logic + g . . . . . 159 procedural representation . . . . . 161 representation language . . . . . 156 modal logic (13) + g . . . . . . Ins 512 S4 . . . . . . 488 modes . . . . . . 486 frame (2) . . . . . . . SbC 487 frame constraints . . . . . . Par 210 modal operator (2) + g . . . . . . . SbC 472 diamond g . . . . . . . SbC 473 box g . . . . . . SbC 213 doxastic logic g . . . . . . Not 489 accessability relation + . . . . . . Par 471 modal language (2) g . . . . . . . Par 210 modal operator (2) + g . . . . . . . . SbC 472 diamond g . . . . . . . . SbC 473 box g . . . . . . . 490 boolean operators . . . . . . SbC 211 alethic logic g . . . . . . SbC 212 deontic logic (3) g . . . . . . . SbC 521 standard deontic logic g . . . . . . . SbC 523 two-sorted deontic logic g . . . . . . . SbC 522 dyadic deontic logic g . . . . . . Par 215 Kripke semantics + g . . . . . . . Not 489 accessability relation + . . . . . . Par 457 modal model theory (7) + . . . . . . . SbC 215 Kripke semantics + g . . . . . . . . Not 489 accessability relation + . . . . . . . Not 461 generated submodel g . . . . . . . 462 model (4) + . . . . . . . . SbC 464 finite model g . . . . . . . . SbC 466 image finite model . . . . . . . . . Res 467 Hennessy-Milner theorem g . . . . . . . . Par 463 valuation g . . . . . . . . SbC 465 tree model g . . . . . . . Not 459 disjoint union of models g . . . . . . . 455 homomorphism (2) + g . . . . . . . . SbC 456 bounded homomorphism g . . . . . . . . SbC 468 bounded morphism . . . . . . . Not 469 expressive power g . . . . . . . . Not 470 standard translation + g . . . . . . . Not 460 bisimulation g . . . . . . SbC 214 epistemic logic g . . . . . . Not 462 model (4) + . . . . . . . SbC 464 finite model g . . . . . . . SbC 466 image finite model . . . . . . . . Res 467 Hennessy-Milner theorem g . . . . . . . Par 463 valuation g . . . . . . . SbC 465 tree model g . . . . . 97 context (2) . . . . . . 99 context dependence . . . . . . 98 context change . . . . . 160 relation system . . . . . 153 frame problem g . . . . . 92 concept analysis . . . . . . 90 concept + . . . . . . . 91 individual concept . . . . . 163 script . . . . . 145 idea g . . . . . . 90 concept + . . . . . . . 91 individual concept . . . . . 164 semantic network g . . . . . 247 nonmonotonic logic + g . . . . . . 248 default inference . . . . Par 367 semantics 367 (8) g . . . . . 371 truth conditional semantics . . . . . 373 truth table . . . . . SbC 215 Kripke semantics + g . . . . . . Not 489 accessability relation + . . . . . 85 functional completeness + . . . . . 370 satisfaction . . . . . 369 material implication g . . . . . 368 assignment . . . . . Not 372 truth function + g . . . . Par 201 set theory (24) + g . . . . . 398 set-theoretic definability . . . . . Not 391 iota operator . . . . . 384 determinacy . . . . . 387 fuzzy relation . . . . . Not 385 filter . . . . . 389 generalized continuum hypothesis . . . . . 386 function (3) g . . . . . . 482 hypothetical reasoning + . . . . . . 509 functional application . . . . . . 508 functional composition . . . . . Not 394 ordinal definability . . . . . Not 107 consistency + . . . . . 397 set algebra . . . . . 399 Suslin scheme . . . . . SbC 383 descriptive set theory g . . . . . 388 fuzzy set g . . . . . 378 borel classification g . . . . . SbC 380 combinatorial set theory . . . . . Not 390 independence . . . . . 381 constructibility . . . . . 396 relation g . . . . . 377 axiom of choice g . . . . . 392 large cardinal . . . . . Not 395 ordinal number . . . . . 393 Martin's axiom . . . . . 382 continuum hypothesis g . . . . . Not 379 cardinal number . . . . Par 216 abstract model theory + . . . . . 254 quantifier (5) + g . . . . . . Not 516 bound variable + g . . . . . . His 514 Frege on quantification + g . . . . . . Not 517 free variable + g . . . . . . His 513 Aristotle on quantification + . . . . . . Not 301 scope . . . . . . . 351 scoping algorithm . . . . 178 compactness + . . . . His 177 aristotelean logic (2) + g . . . . . Par 39 syllogism g . . . . . Par 513 Aristotle on quantification + . . . . Par 196 foundations of theories . . . . 195 constraint programming . . . 40 planning . . . Not 36 classification . . . Not 37 heuristic g . . Par 89 theory of computation (4) g . . . Par 127 formal language theory (10) g . . . . 128 categorial grammar + . . . . . SbC 528 combinatorial categorial grammar . . . . 131 context free language g . . . . 130 Chomsky hierarchy g . . . . 134 phrase structure grammar . . . . 129 category . . . . 135 recursive language + g . . . . 137 unrestricted language g . . . . 136 regular language . . . . 132 context sensitive language g . . . . 133 feature constraint . . . Par 302 recursion theory (31) g . . . . 306 complexity of computation . . . . 330 undecidability . . . . 328 theory of numerations . . . . 309 effectively presented structure . . . . 314 isol . . . . 307 decidability (2) g . . . . . 474 tree model property g . . . . . 504 subformula property . . . . 322 recursively enumerable degree . . . . 331 word problem . . . . 327 subrecursive hierarchy . . . . 315 post system . . . . 324 recursively enumerable set . . . . 320 recursive function . . . . 318 recursive axiomatizability . . . . 329 thue system . . . . 325 reducibility . . . . 304 automaton . . . . 310 formal grammar . . . . 326 set recursion theory . . . . 303 abstract recursion theory . . . . 323 recursively enumerable language . . . . 305 axiomatic recursion theory . . . . 135 recursive language + g . . . . 313 inductive definability . . . . 316 recursion theory on admissible sets . . . . Not 52 Turing machine + . . . . 308 degrees of sets of sentences . . . . 319 recursive equivalence type . . . . 312 higher type recursion theory . . . . 317 recursion theory on ordinals . . . . 321 recursive relation . . . . 311 hierarchy . . . Par 185 computational logic (1) (8) g . . . . 190 semantics 190 (8) + g . . . . . 356 denotational semantics . . . . . 119 domain theory g . . . . . . 120 domain . . . . . 360 program analysis . . . . . 359 process model . . . . . SbC 215 Kripke semantics + g . . . . . . Not 489 accessability relation + . . . . . 357 operational semantics . . . . . 358 partial evaluation . . . . . 355 algebraic semantics . . . . 189 reasoning about programs . . . . 53 automated reasoning (25) + . . . . . 35 belief revision . . . . . . 76 update . . . . . 67 nonmonotonic reasoning . . . . . 63 mathematical induction . . . . . 71 rewrite system (3) . . . . . . 350 termination . . . . . . 348 confluence . . . . . . 349 critical pair . . . . . 70 resolution (7) + . . . . . . 339 purity principle . . . . . . 342 simplification . . . . . . 337 demodulation . . . . . . 338 ordering . . . . . . 340 removal of tautologies . . . . . . 341 resolution refinement (4) . . . . . . . 345 lock resolution . . . . . . . 344 hyper resolution . . . . . . . 347 theory resolution . . . . . . . 346 set of support . . . . . . 343 subsumption . . . . . 68 paramodulation . . . . . Not 72 skolemisation . . . . . 65 model checking . . . . . 55 clause 55 (2) . . . . . . 80 horn clause g . . . . . . 79 Gentzen clause . . . . . 74 uncertainty . . . . . 75 unification + . . . . . 57 connection graph procedure . . . . . 64 metatheory . . . . . 61 literal . . . . . 58 connection matrix . . . . . 81 clause 81 . . . . . . SbC 82 relative clause . . . . . 69 reason extraction . . . . . 59 deduction (7) + . . . . . . Not 109 inconsistency . . . . . . 106 consequence g . . . . . . SbC 494 labelled deductive system . . . . . . 111 rule-based deduction . . . . . . Not 108 entailment + . . . . . . 110 natural deduction (2) + g . . . . . . . Not 482 hypothetical reasoning + . . . . . . . Not 483 normalization . . . . . . Not 107 consistency + . . . . . Res 60 Herbrand's theorem . . . . . 56 completion . . . . . . 86 Knuth Bendix completion . . . . . 73 theorem prover (3) . . . . . . 427 Bliksem g . . . . . . 428 Boyer-Moore theorem prover . . . . . . 429 SPASS g . . . . . 66 narrowing . . . . . 62 logic programming g . . . . . 54 answer extraction . . . . . 247 nonmonotonic logic + g . . . . . . 248 default inference . . . . Not 83 completeness (2) + g . . . . . SbC 84 axiomatic completeness . . . . . SbC 85 functional completeness + . . . . 188 program verification (4) . . . . . 274 mechanical verification . . . . . 269 invariant + . . . . . 273 logic of programs . . . . . 43 assertion (2) + . . . . . . 45 imperative assertion . . . . . . 44 declarative assertion . . . . 435 type theory (2) + . . . . . 433 type . . . . . . 434 type shifting . . . . . Not 23 polymorphism + g . . . . 186 program construct (5) . . . . . 265 functional construct . . . . . 267 program scheme . . . . . 266 object oriented construct . . . . . 264 control primitive . . . . . 268 type structure . . . . 187 program specification (5) . . . . . 271 pre-condition . . . . . 269 invariant + . . . . . 272 specification technique . . . . . 43 assertion (2) + . . . . . . 45 imperative assertion . . . . . . 44 declarative assertion . . . . . 270 post-condition . . . Par 48 automata theory (4) . . . . Not 52 Turing machine + . . . . 50 linear bounded automaton . . . . 49 finite state machine g . . . . 51 push down automaton . 173 linguistics (13) g . . Par 446 descriptive linguistics g . . . 142 grammar (5) g . . . . Not 519 derivation g . . . . 452 grammatical constituent g . . . . . 121 ellipsis g . . . . . . 122 antecedent of ellipsis . . . . 444 linguistic unit (3) g . . . . . SbC 440 word (5) g . . . . . . 28 anaphor (2) g . . . . . . . 30 antecedent of an anaphor . . . . . . . 29 anaphora resolution . . . . . . 278 pronoun (2) g . . . . . . . 280 pronoun resolution . . . . . . . 279 demonstrative g . . . . . . 138 function word (2) g . . . . . . . SbC 139 determiner g . . . . . . . SbC 441 modifier g . . . . . . . . 445 adjective (4) g . . . . . . . . . 4 predicative position . . . . . . . . . 1 adverbial modification g . . . . . . . . . 3 intersective adjective . . . . . . . . . 2 graded adjective . . . . . . 442 content word g . . . . . . 425 term (2) g . . . . . . . 426 singular term g . . . . . . . 260 plural term (2) g . . . . . . . . 261 collective reading . . . . . . . . 262 distributive reading . . . . . SbC 500 quantified phrases + . . . . . SbC 115 discourse (3) g . . . . . . 116 discourse particle . . . . . . 118 discourse representation theory g . . . . . . 117 discourse referent . . . . 144 syntax 144 (2) g . . . . . 453 logical syntax g . . . . . . 12 algebraic logic (10) + . . . . . . . 6 boolean algebra + . . . . . . . . SbC 7 boolean algebra with operators . . . . . . . 17 post algebra . . . . . . . 15 Lukasiewicz algebra . . . . . . . 14 cylindric algebra g . . . . . . . 8 lattice + g . . . . . . . 18 quantum logic . . . . . . . 10 relation algebra + . . . . . . . 13 categorical logic . . . . . . . 16 polyadic algebra . . . . . . . 19 topos . . . . . 423 syntactic category (3) g . . . . . . 447 part of speech g . . . . . . SbC 249 noun (2) g . . . . . . . SbC 251 proper name . . . . . . . SbC 250 mass noun g . . . . . . SbC 438 verb g . . . . . . . SbC 439 perception verb . . . . 143 sentence g . . 443 linguistic geography g . . Not 502 discontinuity . . Par 361 formal semantics (10) + g . . . 365 property theory . . . 240 Montague grammar (4) . . . . 243 sense 243 (4) g . . . . . 203 meaning relation (5) . . . . . . 205 hyponymy g . . . . . . 204 antonymy g . . . . . . 207 synonymy g . . . . . . . 149 intensional isomorphism + . . . . . . 206 paraphrase g . . . . . . 108 entailment + . . . . . 375 metaphor g . . . . . 376 metonymy g . . . . . 374 literal meaning . . . . 244 sense 244 g . . . . 241 meaning postulate . . . . 242 ptq g . . . . . 300 quantifying in . . . 254 quantifier (5) + g . . . . Not 516 bound variable + g . . . . His 514 Frege on quantification + g . . . . Not 517 free variable + g . . . . His 513 Aristotle on quantification + . . . . Not 301 scope . . . . . 351 scoping algorithm . . . 353 truth (4) + . . . . 431 truth definition g . . . . 432 truth value . . . . 372 truth function + g . . . . 430 truth condition . . . 362 dynamic semantics . . . 363 lexical semantics . . . 366 situation semantics (2) g . . . . 402 partiality . . . . 400 situation . . . . . 401 scene . . . Not 507 compositionality . . . 364 natural logic + . . . Par 515 quantification (4) + . . . . Not 516 bound variable + g . . . . His 514 Frege on quantification + g . . . . Not 517 free variable + g . . . . His 513 Aristotle on quantification + . . Not 20 ambiguity (7) g . . . SbC 27 syntactic ambiguity . . . SbC 25 semantic ambiguity + g . . . SbC 22 lexical ambiguity g . . . SbC 21 derivational ambiguity . . . SbC 24 pragmatic ambiguity . . . SbC 26 structural ambiguity . . . 23 polymorphism + g . . 510 frameworks (7) . . . 535 LFG . . . 128 categorial grammar + . . . . SbC 528 combinatorial categorial grammar . . . 530 TAG . . . 532 DRT . . . 529 GB . . . 534 HPSG . . . 531 dynamic syntax . . 506 linguistic phenomena . . Not 174 language acquisition g . . Par 450 pragmatics (2) g . . . 403 speech act (5) g . . . . 408 statement (2) g . . . . . 112 description (2) g . . . . . . SbC 114 indefinite description . . . . . . SbC 113 definite description . . . . . 409 indicative statement . . . . 405 indirect speech act . . . . 406 performative . . . . 407 performative hypothesis . . . . 404 illocutionary force . . . 100 conversational maxim (3) g . . . . 103 implicature + g . . . . 102 cooperative principle . . . . 101 conversational implicature g . . 499 syntax and semantic interface + . . Par 175 semantics 175 (16) g . . . 25 semantic ambiguity + g . . . Not 123 extension g . . . . 124 extensionality g . . . 334 referent g . . . Not 332 reference (2) g . . . . 333 identity puzzle . . . . 335 referential term . . . . . SbC 336 anchor . . . Not 263 presupposition g . . . . 103 implicature + g . . . Not 146 indexicality . . . . 147 indexical expression g . . . Par 41 aspect . . . . 42 aspectual classification . . . SbC 361 formal semantics (10) + g . . . . 365 property theory . . . . 240 Montague grammar (4) . . . . . 243 sense 243 (4) g . . . . . . 203 meaning relation (5) . . . . . . . 205 hyponymy g . . . . . . . 204 antonymy g . . . . . . . 207 synonymy g . . . . . . . . 149 intensional isomorphism + . . . . . . . 206 paraphrase g . . . . . . . 108 entailment + . . . . . . 375 metaphor g . . . . . . 376 metonymy g . . . . . . 374 literal meaning . . . . . 244 sense 244 g . . . . . 241 meaning postulate . . . . . 242 ptq g . . . . . . 300 quantifying in . . . . 254 quantifier (5) + g . . . . . Not 516 bound variable + g . . . . . His 514 Frege on quantification + g . . . . . Not 517 free variable + g . . . . . His 513 Aristotle on quantification + . . . . . Not 301 scope . . . . . . 351 scoping algorithm . . . . 353 truth (4) + . . . . . 431 truth definition g . . . . . 432 truth value . . . . . 372 truth function + g . . . . . 430 truth condition . . . . 362 dynamic semantics . . . . 363 lexical semantics . . . . 366 situation semantics (2) g . . . . . 402 partiality . . . . . 400 situation . . . . . . 401 scene . . . . Not 507 compositionality . . . . 364 natural logic + . . . . Par 515 quantification (4) + . . . . . Not 516 bound variable + g . . . . . His 514 Frege on quantification + g . . . . . Not 517 free variable + g . . . . . His 513 Aristotle on quantification + . . . Not 501 coordination . . . Not 353 truth (4) + . . . . 431 truth definition g . . . . 432 truth value . . . . 372 truth function + g . . . . 430 truth condition . . . Not 354 underspecification (2) . . . . 437 quasi-logical form . . . . 436 monotonic semantics . . . 499 syntax and semantic interface + . . . Par 46 attitude . . . . SbC 47 propositional attitude . . . . . Not 299 belief . . . Not 500 quantified phrases + . . . Not 148 intension (3) g . . . . 149 intensional isomorphism + . . . . 151 intensionality . . . . 150 intensional verb . . . 31 animal (3) g . . . . SbC 33 unicorn . . . . SbC 32 donkey . . . . SbC 352 rabbit . . Par 496 syntax 496 (2) g . . . Par 498 word order . . . Par 497 movement . . Par 140 language generation . . . 141 reversibility . 202 mathematics (5) g . . Not 527 algebra 2 g . . 191 logic (1) (31) + g . . . Par 53 automated reasoning (25) + . . . . 35 belief revision . . . . . 76 update . . . . 67 nonmonotonic reasoning . . . . 63 mathematical induction . . . . 71 rewrite system (3) . . . . . 350 termination . . . . . 348 confluence . . . . . 349 critical pair . . . . 70 resolution (7) + . . . . . 339 purity principle . . . . . 342 simplification . . . . . 337 demodulation . . . . . 338 ordering . . . . . 340 removal of tautologies . . . . . 341 resolution refinement (4) . . . . . . 345 lock resolution . . . . . . 344 hyper resolution . . . . . . 347 theory resolution . . . . . . 346 set of support . . . . . 343 subsumption . . . . 68 paramodulation . . . . Not 72 skolemisation . . . . 65 model checking . . . . 55 clause 55 (2) . . . . . 80 horn clause g . . . . . 79 Gentzen clause . . . . 74 uncertainty . . . . 75 unification + . . . . 57 connection graph procedure . . . . 64 metatheory . . . . 61 literal . . . . 58 connection matrix . . . . 81 clause 81 . . . . . SbC 82 relative clause . . . . 69 reason extraction . . . . 59 deduction (7) + . . . . . Not 109 inconsistency . . . . . 106 consequence g . . . . . SbC 494 labelled deductive system . . . . . 111 rule-based deduction . . . . . Not 108 entailment + . . . . . 110 natural deduction (2) + g . . . . . . Not 482 hypothetical reasoning + . . . . . . Not 483 normalization . . . . . Not 107 consistency + . . . . Res 60 Herbrand's theorem . . . . 56 completion . . . . . 86 Knuth Bendix completion . . . . 73 theorem prover (3) . . . . . 427 Bliksem g . . . . . 428 Boyer-Moore theorem prover . . . . . 429 SPASS g . . . . 66 narrowing . . . . 62 logic programming g . . . . 54 answer extraction . . . . 247 nonmonotonic logic + g . . . . . 248 default inference . . . Par 198 proof theory (22) g . . . . SbC 503 sequent calculus . . . . . Not 484 structural rules . . . . 289 interpretation . . . . 282 constructive analysis . . . . 295 recursive ordinal . . . . 287 Goedel numbering . . . . 288 higher-order arithmetic . . . . 281 complexity of proofs . . . . 294 recursive analysis . . . . Res 292 normal form theorem . . . . 297 second-order arithmetic . . . . SbC 110 natural deduction (2) + g . . . . . Not 482 hypothetical reasoning + . . . . . Not 483 normalization . . . . 290 intuitionistic mathematics . . . . 286 functionals in proof theory . . . . 298 structure of proofs g . . . . 283 constructive system . . . . 291 metamathematics . . . . 59 deduction (7) + . . . . . Not 109 inconsistency . . . . . 106 consequence g . . . . . SbC 494 labelled deductive system . . . . . 111 rule-based deduction . . . . . Not 108 entailment + . . . . . 110 natural deduction (2) + g . . . . . . Not 482 hypothetical reasoning + . . . . . . Not 483 normalization . . . . . Not 107 consistency + . . . . 296 relative consistency . . . . Not 284 cut elimination theorem g . . . . 293 ordinal notation . . . . 285 first-order arithmetic . . . . SbC 485 proof nets . . . SbC 475 first order logic (4) g . . . . 254 quantifier (5) + g . . . . . Not 516 bound variable + g . . . . . His 514 Frege on quantification + g . . . . . Not 517 free variable + g . . . . . His 513 Aristotle on quantification + . . . . . Not 301 scope . . . . . . 351 scoping algorithm . . . . Par 476 first order language g . . . . . Not 477 fragment (3) g . . . . . . SbC 479 finite-variable fragment g . . . . . . SbC 480 guarded fragment g . . . . . . SbC 478 modal fragment g . . . . . . . Not 470 standard translation + g . . . . 511 SPASS g . . . . Par 515 quantification (4) + . . . . . Not 516 bound variable + g . . . . . His 514 Frege on quantification + g . . . . . Not 517 free variable + g . . . . . His 513 Aristotle on quantification + . . . 193 computability theory . . . SbC 167 temporal logic (2) + g . . . 435 type theory (2) + . . . . 433 type . . . . . 434 type shifting . . . . Not 23 polymorphism + g . . . 495 substructural logic . . . SbC 200 relevance logic + . . . . 108 entailment + . . . Res 180 Lindstroem's theorem + . . . SbC 481 linear logic . . . 526 variable g . . . . SbC 517 free variable + g . . . Res 179 Goedel's 1st incompleteness theorem (1931) + g . . . SbC 125 feature logic + . . . . 75 unification + . . . 197 model theory (29) . . . . 237 set-theoretic model theory . . . . 11 universal algebra + . . . . 225 infinitary logic . . . . 217 admissible set . . . . 234 recursion-theoretic model theory . . . . 239 ultraproduct . . . . 227 logic with extra quantifiers . . . . SbC 457 modal model theory (7) + . . . . . SbC 215 Kripke semantics + g . . . . . . Not 489 accessability relation + . . . . . Not 461 generated submodel g . . . . . 462 model (4) + . . . . . . SbC 464 finite model g . . . . . . SbC 466 image finite model . . . . . . . Res 467 Hennessy-Milner theorem g . . . . . . Par 463 valuation g . . . . . . SbC 465 tree model g . . . . . Not 459 disjoint union of models g . . . . . 455 homomorphism (2) + g . . . . . . SbC 456 bounded homomorphism g . . . . . . SbC 468 bounded morphism . . . . . Not 469 expressive power g . . . . . . Not 470 standard translation + g . . . . . Not 460 bisimulation g . . . . 219 completeness of theories . . . . 235 saturation . . . . 222 equational class . . . . 238 stability . . . . 233 quantifier elimination . . . . 221 denumerable structure . . . . 228 model-theoretic algebra . . . . 236 second-order model theory . . . . 230 model of arithmetic . . . . 218 categoricity g . . . . 220 definability . . . . 226 interpolation . . . . SbC 454 first order model theory . . . . . 455 homomorphism (2) + g . . . . . . SbC 456 bounded homomorphism g . . . . . . SbC 468 bounded morphism . . . . 231 nonclassical model (2) . . . . . 246 sheaf model . . . . . 245 boolean valued . . . . 201 set theory (24) + g . . . . . 398 set-theoretic definability . . . . . Not 391 iota operator . . . . . 384 determinacy . . . . . 387 fuzzy relation . . . . . Not 385 filter . . . . . 389 generalized continuum hypothesis . . . . . 386 function (3) g . . . . . . 482 hypothetical reasoning + . . . . . . 509 functional application . . . . . . 508 functional composition . . . . . Not 394 ordinal definability . . . . . Not 107 consistency + . . . . . 397 set algebra . . . . . 399 Suslin scheme . . . . . SbC 383 descriptive set theory g . . . . . 388 fuzzy set g . . . . . 378 borel classification g . . . . . SbC 380 combinatorial set theory . . . . . Not 390 independence . . . . . 381 constructibility . . . . . 396 relation g . . . . . 377 axiom of choice g . . . . . 392 large cardinal . . . . . Not 395 ordinal number . . . . . 393 Martin's axiom . . . . . 382 continuum hypothesis g . . . . . Not 379 cardinal number . . . . 232 preservation . . . . 216 abstract model theory + . . . . . 254 quantifier (5) + g . . . . . . Not 516 bound variable + g . . . . . . His 514 Frege on quantification + g . . . . . . Not 517 free variable + g . . . . . . His 513 Aristotle on quantification + . . . . . . Not 301 scope . . . . . . . 351 scoping algorithm . . . . 229 model-theoretic forcing . . . . 224 higher-order model theory . . . . Par 493 correspondence theory . . . . 223 finite structure . . . Res 182 Loewenheim-Skolem-Tarski theorem + . . . Not 83 completeness (2) + g . . . . SbC 84 axiomatic completeness . . . . SbC 85 functional completeness + . . . SbC 156 modal logic (13) + g . . . . Ins 512 S4 . . . . 488 modes . . . . 486 frame (2) . . . . . SbC 487 frame constraints . . . . Par 210 modal operator (2) + g . . . . . SbC 472 diamond g . . . . . SbC 473 box g . . . . SbC 213 doxastic logic g . . . . Not 489 accessability relation + . . . . Par 471 modal language (2) g . . . . . Par 210 modal operator (2) + g . . . . . . SbC 472 diamond g . . . . . . SbC 473 box g . . . . . 490 boolean operators . . . . SbC 211 alethic logic g . . . . SbC 212 deontic logic (3) g . . . . . SbC 521 standard deontic logic g . . . . . SbC 523 two-sorted deontic logic g . . . . . SbC 522 dyadic deontic logic g . . . . Par 215 Kripke semantics + g . . . . . Not 489 accessability relation + . . . . Par 457 modal model theory (7) + . . . . . SbC 215 Kripke semantics + g . . . . . . Not 489 accessability relation + . . . . . Not 461 generated submodel g . . . . . 462 model (4) + . . . . . . SbC 464 finite model g . . . . . . SbC 466 image finite model . . . . . . . Res 467 Hennessy-Milner theorem g . . . . . . Par 463 valuation g . . . . . . SbC 465 tree model g . . . . . Not 459 disjoint union of models g . . . . . 455 homomorphism (2) + g . . . . . . SbC 456 bounded homomorphism g . . . . . . SbC 468 bounded morphism . . . . . Not 469 expressive power g . . . . . . Not 470 standard translation + g . . . . . Not 460 bisimulation g . . . . SbC 214 epistemic logic g . . . . Not 462 model (4) + . . . . . SbC 464 finite model g . . . . . SbC 466 image finite model . . . . . . Res 467 Hennessy-Milner theorem g . . . . . Par 463 valuation g . . . . . SbC 465 tree model g . . . 194 computational logic (2) . . . Not 183 operator (4) + g . . . . 254 quantifier (5) + g . . . . . Not 516 bound variable + g . . . . . His 514 Frege on quantification + g . . . . . Not 517 free variable + g . . . . . His 513 Aristotle on quantification + . . . . . Not 301 scope . . . . . . 351 scoping algorithm . . . . SbC 210 modal operator (2) + g . . . . . SbC 472 diamond g . . . . . SbC 473 box g . . . . 518 truth-funcional operator (2) g . . . . . SbC 252 iff g . . . . . SbC 253 negation . . . . Not 525 arity g . . . SbC 192 combinatory logic g . . . Par 199 recursive function theory . . . 361 formal semantics (10) + g . . . . 365 property theory . . . . 240 Montague grammar (4) . . . . . 243 sense 243 (4) g . . . . . . 203 meaning relation (5) . . . . . . . 205 hyponymy g . . . . . . . 204 antonymy g . . . . . . . 207 synonymy g . . . . . . . . 149 intensional isomorphism + . . . . . . . 206 paraphrase g . . . . . . . 108 entailment + . . . . . . 375 metaphor g . . . . . . 376 metonymy g . . . . . . 374 literal meaning . . . . . 244 sense 244 g . . . . . 241 meaning postulate . . . . . 242 ptq g . . . . . . 300 quantifying in . . . . 254 quantifier (5) + g . . . . . Not 516 bound variable + g . . . . . His 514 Frege on quantification + g . . . . . Not 517 free variable + g . . . . . His 513 Aristotle on quantification + . . . . . Not 301 scope . . . . . . 351 scoping algorithm . . . . 353 truth (4) + . . . . . 431 truth definition g . . . . . 432 truth value . . . . . 372 truth function + g . . . . . 430 truth condition . . . . 362 dynamic semantics . . . . 363 lexical semantics . . . . 366 situation semantics (2) g . . . . . 402 partiality . . . . . 400 situation . . . . . . 401 scene . . . . Not 507 compositionality . . . . 364 natural logic + . . . . Par 515 quantification (4) + . . . . . Not 516 bound variable + g . . . . . His 514 Frege on quantification + g . . . . . Not 517 free variable + g . . . . . His 513 Aristotle on quantification + . . . SbC 168 lambda calculus (4) g . . . . 170 application . . . . 172 lambda operator . . . . 169 abstraction . . . . 171 conversion . . . 38 knowledge representation (20) + g . . . . 152 frame (1) . . . . 104 database + g . . . . . 105 query g . . . . 165 situation calculus . . . . 167 temporal logic (2) + g . . . . 166 temporal logic (1) g . . . . 93 concept formation . . . . . 90 concept + . . . . . . 91 individual concept . . . . 154 logical omniscience . . . . 162 rule-based representation . . . . 157 predicate logic + g . . . . 159 procedural representation . . . . 161 representation language . . . . 156 modal logic (13) + g . . . . . Ins 512 S4 . . . . . 488 modes . . . . . 486 frame (2) . . . . . . SbC 487 frame constraints . . . . . Par 210 modal operator (2) + g . . . . . . SbC 472 diamond g . . . . . . SbC 473 box g . . . . . SbC 213 doxastic logic g . . . . . Not 489 accessability relation + . . . . . Par 471 modal language (2) g . . . . . . Par 210 modal operator (2) + g . . . . . . . SbC 472 diamond g . . . . . . . SbC 473 box g . . . . . . 490 boolean operators . . . . . SbC 211 alethic logic g . . . . . SbC 212 deontic logic (3) g . . . . . . SbC 521 standard deontic logic g . . . . . . SbC 523 two-sorted deontic logic g . . . . . . SbC 522 dyadic deontic logic g . . . . . Par 215 Kripke semantics + g . . . . . . Not 489 accessability relation + . . . . . Par 457 modal model theory (7) + . . . . . . SbC 215 Kripke semantics + g . . . . . . . Not 489 accessability relation + . . . . . . Not 461 generated submodel g . . . . . . 462 model (4) + . . . . . . . SbC 464 finite model g . . . . . . . SbC 466 image finite model . . . . . . . . Res 467 Hennessy-Milner theorem g . . . . . . . Par 463 valuation g . . . . . . . SbC 465 tree model g . . . . . . Not 459 disjoint union of models g . . . . . . 455 homomorphism (2) + g . . . . . . . SbC 456 bounded homomorphism g . . . . . . . SbC 468 bounded morphism . . . . . . Not 469 expressive power g . . . . . . . Not 470 standard translation + g . . . . . . Not 460 bisimulation g . . . . . SbC 214 epistemic logic g . . . . . Not 462 model (4) + . . . . . . SbC 464 finite model g . . . . . . SbC 466 image finite model . . . . . . . Res 467 Hennessy-Milner theorem g . . . . . . Par 463 valuation g . . . . . . SbC 465 tree model g . . . . 97 context (2) . . . . . 99 context dependence . . . . . 98 context change . . . . 160 relation system . . . . 153 frame problem g . . . . 92 concept analysis . . . . . 90 concept + . . . . . . 91 individual concept . . . . 163 script . . . . 145 idea g . . . . . 90 concept + . . . . . . 91 individual concept . . . . 164 semantic network g . . . . 247 nonmonotonic logic + g . . . . . 248 default inference . . . Par 367 semantics 367 (8) g . . . . 371 truth conditional semantics . . . . 373 truth table . . . . SbC 215 Kripke semantics + g . . . . . Not 489 accessability relation + . . . . 85 functional completeness + . . . . 370 satisfaction . . . . 369 material implication g . . . . 368 assignment . . . . Not 372 truth function + g . . . Par 201 set theory (24) + g . . . . 398 set-theoretic definability . . . . Not 391 iota operator . . . . 384 determinacy . . . . 387 fuzzy relation . . . . Not 385 filter . . . . 389 generalized continuum hypothesis . . . . 386 function (3) g . . . . . 482 hypothetical reasoning + . . . . . 509 functional application . . . . . 508 functional composition . . . . Not 394 ordinal definability . . . . Not 107 consistency + . . . . 397 set algebra . . . . 399 Suslin scheme . . . . SbC 383 descriptive set theory g . . . . 388 fuzzy set g . . . . 378 borel classification g . . . . SbC 380 combinatorial set theory . . . . Not 390 independence . . . . 381 constructibility . . . . 396 relation g . . . . 377 axiom of choice g . . . . 392 large cardinal . . . . Not 395 ordinal number . . . . 393 Martin's axiom . . . . 382 continuum hypothesis g . . . . Not 379 cardinal number . . . Par 216 abstract model theory + . . . . 254 quantifier (5) + g . . . . . Not 516 bound variable + g . . . . . His 514 Frege on quantification + g . . . . . Not 517 free variable + g . . . . . His 513 Aristotle on quantification + . . . . . Not 301 scope . . . . . . 351 scoping algorithm . . . 178 compactness + . . . His 177 aristotelean logic (2) + g . . . . Par 39 syllogism g . . . . Par 513 Aristotle on quantification + . . . Par 196 foundations of theories . . . 195 constraint programming . . 424 system g . . Par 5 algebra 1 (8) g . . . 8 lattice + g . . . SbC 6 boolean algebra + . . . . SbC 7 boolean algebra with operators . . . 11 universal algebra + . . . 77 category theory + g . . . . 78 bottom . . . SbC 9 Lindenbaum algebra . . . 10 relation algebra + . . . 12 algebraic logic (10) + . . . . 6 boolean algebra + . . . . . SbC 7 boolean algebra with operators . . . . 17 post algebra . . . . 15 Lukasiewicz algebra . . . . 14 cylindric algebra g . . . . 8 lattice + g . . . . 18 quantum logic . . . . 10 relation algebra + . . . . 13 categorical logic . . . . 16 polyadic algebra . . . . 19 topos . . . Par 491 algebraic principles . . . . SbC 492 residuation . . 176 mathematical logic (12) g . . . Res 180 Lindstroem's theorem + . . . 77 category theory + g . . . . 78 bottom . . . 53 automated reasoning (25) + . . . . 35 belief revision . . . . . 76 update . . . . 67 nonmonotonic reasoning . . . . 63 mathematical induction . . . . 71 rewrite system (3) . . . . . 350 termination . . . . . 348 confluence . . . . . 349 critical pair . . . . 70 resolution (7) + . . . . . 339 purity principle . . . . . 342 simplification . . . . . 337 demodulation . . . . . 338 ordering . . . . . 340 removal of tautologies . . . . . 341 resolution refinement (4) . . . . . . 345 lock resolution . . . . . . 344 hyper resolution . . . . . . 347 theory resolution . . . . . . 346 set of support . . . . . 343 subsumption . . . . 68 paramodulation . . . . Not 72 skolemisation . . . . 65 model checking . . . . 55 clause 55 (2) . . . . . 80 horn clause g . . . . . 79 Gentzen clause . . . . 74 uncertainty . . . . 75 unification + . . . . 57 connection graph procedure . . . . 64 metatheory . . . . 61 literal . . . . 58 connection matrix . . . . 81 clause 81 . . . . . SbC 82 relative clause . . . . 69 reason extraction . . . . 59 deduction (7) + . . . . . Not 109 inconsistency . . . . . 106 consequence g . . . . . SbC 494 labelled deductive system . . . . . 111 rule-based deduction . . . . . Not 108 entailment + . . . . . 110 natural deduction (2) + g . . . . . . Not 482 hypothetical reasoning + . . . . . . Not 483 normalization . . . . . Not 107 consistency + . . . . Res 60 Herbrand's theorem . . . . 56 completion . . . . . 86 Knuth Bendix completion . . . . 73 theorem prover (3) . . . . . 427 Bliksem g . . . . . 428 Boyer-Moore theorem prover . . . . . 429 SPASS g . . . . 66 narrowing . . . . 62 logic programming g . . . . 54 answer extraction . . . . 247 nonmonotonic logic + g . . . . . 248 default inference . . . Res 182 Loewenheim-Skolem-Tarski theorem + . . . 181 logical constants . . . Not 83 completeness (2) + g . . . . SbC 84 axiomatic completeness . . . . SbC 85 functional completeness + . . . Res 179 Goedel's 1st incompleteness theorem (1931) + g . . . Not 183 operator (4) + g . . . . 254 quantifier (5) + g . . . . . Not 516 bound variable + g . . . . . His 514 Frege on quantification + g . . . . . Not 517 free variable + g . . . . . His 513 Aristotle on quantification + . . . . . Not 301 scope . . . . . . 351 scoping algorithm . . . . SbC 210 modal operator (2) + g . . . . . SbC 472 diamond g . . . . . SbC 473 box g . . . . 518 truth-funcional operator (2) g . . . . . SbC 252 iff g . . . . . SbC 253 negation . . . . Not 525 arity g . . . Not 178 compactness + . . . Res 520 Goedel's 2nd incompleteness theorem (1931) g . . . 435 type theory (2) + . . . . 433 type . . . . . 434 type shifting . . . . Not 23 polymorphism + g . . . 184 symbolic logic (18) g . . . . SbC 412 dynamic logic . . . . 420 partial logic . . . . SbC 413 fuzzy logic g . . . . 200 relevance logic + . . . . . 108 entailment + . . . . SbC 419 paraconsistent logic . . . . 416 intermediate logic . . . . 125 feature logic + . . . . . 75 unification + . . . . 157 predicate logic + g . . . . 364 natural logic + . . . . SbC 422 propositional logic g . . . . SbC 410 boolean logic g . . . . SbC 156 modal logic (13) + g . . . . . Ins 512 S4 . . . . . 488 modes . . . . . 486 frame (2) . . . . . . SbC 487 frame constraints . . . . . Par 210 modal operator (2) + g . . . . . . SbC 472 diamond g . . . . . . SbC 473 box g . . . . . SbC 213 doxastic logic g . . . . . Not 489 accessability relation + . . . . . Par 471 modal language (2) g . . . . . . Par 210 modal operator (2) + g . . . . . . . SbC 472 diamond g . . . . . . . SbC 473 box g . . . . . . 490 boolean operators . . . . . SbC 211 alethic logic g . . . . . SbC 212 deontic logic (3) g . . . . . . SbC 521 standard deontic logic g . . . . . . SbC 523 two-sorted deontic logic g . . . . . . SbC 522 dyadic deontic logic g . . . . . Par 215 Kripke semantics + g . . . . . . Not 489 accessability relation + . . . . . Par 457 modal model theory (7) + . . . . . . SbC 215 Kripke semantics + g . . . . . . . Not 489 accessability relation + . . . . . . Not 461 generated submodel g . . . . . . 462 model (4) + . . . . . . . SbC 464 finite model g . . . . . . . SbC 466 image finite model . . . . . . . . Res 467 Hennessy-Milner theorem g . . . . . . . Par 463 valuation g . . . . . . . SbC 465 tree model g . . . . . . Not 459 disjoint union of models g . . . . . . 455 homomorphism (2) + g . . . . . . . SbC 456 bounded homomorphism g . . . . . . . SbC 468 bounded morphism . . . . . . Not 469 expressive power g . . . . . . . Not 470 standard translation + g . . . . . . Not 460 bisimulation g . . . . . SbC 214 epistemic logic g . . . . . Not 462 model (4) + . . . . . . SbC 464 finite model g . . . . . . SbC 466 image finite model . . . . . . . Res 467 Hennessy-Milner theorem g . . . . . . Par 463 valuation g . . . . . . SbC 465 tree model g . . . . SbC 418 many-valued logic g . . . . SbC 417 intuitionistic logic g . . . . SbC 421 probability logic . . . . 411 conditional logic . . . . SbC 414 higher-order logic . . . . 415 inductive logic . 258 philosophy (3) g . . Par 524 philosophy of language g . . Par 259 logic 259 (2) g . . . His 177 aristotelean logic (2) + g . . . . Par 39 syllogism g . . . . Par 513 Aristotle on quantification + . . . 449 proposition (2) g . . . . 448 contradiction g . . . . . 255 paradox (2) g . . . . . . 256 liar paradox g . . . . . . 257 semantic paradox . . . . 94 conditional statement (2) . . . . . 95 antecedent . . . . . 96 counterfactual g . . Par 208 metaphysics g . . . 209 common sense world g

    48. Sci.math FAQ: The Continuum Hypothesis
    Subject sci.math FAQ The Continuum hypothesis Various forcing axioms (eg Martin s axiom), which are ``maximality principles (in the sense of (2)
    http://www.uni-giessen.de/faq/archiv/sci-math-faq.ac.continuumhyp/msg00000.html
    Index
    sci.math FAQ: The Continuum Hypothesis

    49. Todorcevic, Velickovic: Martin's Axiom And Partitions
    KT K. Kunen and F. Tall Between Martin s axiom and Souslin s hypothesis. Fund. Math. 102 (1979) 173181. MS D. Martin and R. Solovay Internal Cohen
    http://www.numdam.org/numdam-bin/fitem?id=CM_1987__63_3_391_0

    50. Sci.math FAQ: The Continuum Hypothesis
    sci.math FAQ The Continuum hypothesis Various forcing axioms (eg Martin s axiom), which are ``maximality principles (in the sense of (2) above),
    http://doc.rz.ifi.lmu.de/FAQ/sci-math-faq/AC/ContinuumHyp/index.html
    Usenet FAQs Search Web FAQs Documents ... RFC Index
    sci.math FAQ: The Continuum Hypothesis
    Newsgroups: sci.math Tue Apr 04 17:26:57 EDT 1995 Rate this FAQ N/A Worst Weak OK Good Great
    Current Top-Rated FAQs

    Are you an expert in some area? Share your knowledge and earn expert points by giving answers or rating people's questions and answers! This section of FAQS.ORG is not sanctioned in any way by FAQ authors or maintainers. Questions awaiting answers: Usenet FAQs Search ... RFC Index
    Send corrections/additions to the FAQ Maintainer:

    51. Solution To Continuum Hypothesis - Common Ascent
    Cohen showed Continuum hypothesis is independent of axioms of ZFC. . Martin s Maximum or axiom (*), but the arguments themselves use distinct
    http://www.forum.commonascent.org/showthread.php?t=1701

    52. Set Theory (Stanford Encyclopedia Of Philosophy)
    The Continuum hypothesis; 4. Axiomatic Set Theory; 5. .. developed by D. A. Martin, Robert Solovay and others, brought together methods of, among others,
    http://plato.stanford.edu/entries/set-theory/
    Cite this entry Search the SEP Advanced Search Tools ...
    Please Read How You Can Help Keep the Encyclopedia Free
    Set Theory
    First published Thu 11 Jul, 2002
    1. The Essence of Set Theory
    The objects of study of Set Theory are sets . As sets are fundamental objects that can be used to define all other concepts in mathematics, they are not defined in terms of more fundamental concepts. Rather, sets are introduced either informally, and are understood as something self-evident, or, as is now standard in modern mathematics, axiomatically, and their properties are postulated by the appropriate formal axioms. The language of set theory is based on a single fundamental relation, called membership . We say that A is a member of B (in symbols A B ), or that the set B contains A as its element. The understanding is that a set is determined by its elements; in other words, two sets are deemed equal if they have exactly the same elements. In practice, one considers sets of numbers, sets of points, sets of functions, sets of some other sets and so on. In theory, it is not necessary to distinguish between objects that are members and objects that contain members the only objects one needs for the theory are sets. See the supplement Basic Set Theory for further discussion.

    53. OUP: UK General Catalogue
    Iterated Boolean Extensions, Martin s axiom and Souslin s hypothesis. 7. BooleanValued Analysis. 8. Intuitionistic Set Theory and Heyting-Algebra-Valued
    http://www.oup.com/uk/catalogue/?ci=9780198568520

    54. Searching Cantor's Continuum Hypothesis
    Results 1 to 3 for cantor s Continuum hypothesis (view as list tiles) teaching english, philosophical ethics, philosophy of math, axiom of choice,
    http://ex.plode.us/search/cantor's continuum hypothesis
    Search for Name or
    Interests Advanced search... Results 1 to 3 for cantor's continuum hypothesis (view as list tiles Via:
    Beginning and Ending
    paganism am©lie dogs ... Latest content Via:
    Greg
    paganism dogs science ... Latest content Via:
    gmalivuk
    music paganism books ... Latest content Results 1 to 3 for cantor's continuum hypothesis Curverider Ltd Developer goodness toggleVisibility('hidetags3228463'); toggleVisibility('hidetags522404'); toggleVisibility('hidetags21932');

    55. Oxford Scholarship Online: Set Theory
    Keywords lattice, Boolean algebra, Heyting algebra, Booleanvalued model, Continuum hypothesis, ultrailter, axiom of choice, forcing, generic, category
    http://www.oxfordscholarship.com/oso/public/content/maths/9780198568520/toc.html
    • About OSO What's New Subscriber Services Help ... Mathematics Subject: Mathematics Book Title: Set Theory Set Theory Boolean-Valued Models and Independence Proofs Bell, John L. , Professor of Philosophy, University of Western Ontario Third Edition Print publication date: 2005
      Published to Oxford Scholarship Online: September 2007
      Print ISBN-13: 978-0-19-856852-0
      doi:10.1093/acprof:oso/9780198568520.001.0001 Abstract: This is the third edition of a well-known graduate textbook on Boolean-valued models of set theory. The aim of the first and second editions was to provide a systematic and adequately motivated exposition of the theory of Boolean-valued models as developed by Scott and Solovay in the 1960s, deriving along the way the central set theoretic independence proofs of Cohen and others in the particularly elegant form that the Boolean-valued approach enables them to assume. In this edition, the background material has been augmented to include an introduction to Heyting algebras. It includes chapters on Boolean-valued analysis and Heyting-algebra-valued models of intuitionistic set theory.
      Keywords: lattice Boolean algebra Heyting algebra Boolean-valued model ... category
      Table of Contents Preface BOOLEAN AND HEYTING ALGEBRAS: THE ESSENTIALS 1. BOOLEAN-VALUED MODELS OF SET THEORY: FIRST STEPS

    56. Sci.math FAQ: The Continuum Hypothesis - Allanswers.org
    sci.math FAQ The Continuum hypothesis . Article from category AC on site Various forcing axioms (eg Martin s axiom), which are ``maximality
    http://allanswers.org/science/sci-math-faq/AC/ContinuumHyp.htm
    Home Science sci-math-faq AC sci.math FAQ: The Continuum Hypothesis Back to category AC Discuss "sci.math FAQ: The Continuum Hypothesis" Home Search ... allanswers.org

    57. Continuum Hypothesis: True, False, Or Neither?
    (See Ellentuck, Gödel s Square Axioms for the Continuum , Mathematische Annalen 1975.) The strongest (Martin s maximum) implies that C = aleph_2.
    http://consc.net/notes/continuum.html
    Is the Continuum Hypothesis True, False, or Neither?
    David J. Chalmers Newsgroups: sci.math
    From: chalmers@bronze.ucs.indiana.edu (David Chalmers)
    Subject: Continuum Hypothesis - Summary
    Date: Wed, 13 Mar 91 21:29:47 GMT
    Thanks to all the people who responded to my enquiry about the status of the Continuum Hypothesis. This is a really fascinating subject, which I could waste far too much time on. The following is a summary of some aspects of the feeling I got for the problems. This will be old-hat to set theorists, and no doubt there are a couple of embarrassing misunderstandings, but it might be of some interest to non-professionals. A basic reference is Gödel's "What is Cantor's Continuum Problem?", from 1947 with a 1963 supplement, reprinted in Benacerraf and Putnam's collection Philosophy of Mathematics . This outlines Gödel's generally anti-CH views, giving some "implausible" consequences of CH. "I believe that adding up all that has been said one has good reason to suspect that the role of the continuum problem in set theory will be to lead to the discovery of new axioms which will make it possible to disprove Cantor's conjecture." At one stage he believed he had a proof that C = aleph_2 from some new axioms, but this turned out to be fallacious. (See Ellentuck, "Gödel's Square Axioms for the Continuum", Mathematische Annalen 1975.)

    58. MBceo.com Continuum Hypothesis | Information About Continuum Hypothesis
    Believing the Axioms, I . Journal of Symbolic Logic 53 (2) 481–511. Martin, D. (1976). Hilbert s first problem the Continuum hypothesis, in
    http://www.mbceo.com/more_information.php?c=Continuum_hypothesis

    Page 1     1-63 of 63    1